OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3703–3710

Polarization phase shifting dispersed fringe sensor

Gene Olczak  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 3703-3710 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (981 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dispersed fringe sensor (DFS) has been demonstrated as an effective means of measuring mirror segment piston error for telescopes with primary mirror apertures below 10 meters. With larger proposed telescopes such as The Thirty Meter Telescope (TMT) and The European Large Telescope (ELT) including ever more segments, there is a need for improvement in the co-phasing capability for segmented primary mirrors. In this paper a novel DFS that employs polarization phase shifting technology is introduced. This novel technology provides system designers and engineers with a new tool to extend the dynamic range of a DFS.

© 2012 OSA

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5060) Instrumentation, measurement, and metrology : Phase modulation

ToC Category:

Original Manuscript: November 23, 2011
Revised Manuscript: January 9, 2012
Manuscript Accepted: January 24, 2012
Published: January 31, 2012

Gene Olczak, "Polarization phase shifting dispersed fringe sensor," Opt. Express 20, 3703-3710 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Shi, G. Chanan, C. Ohara, M. Troy, and D. C. Redding, “Experimental verification of dispersed fringe sensing as a segment phasing technique using the Keck telescope,” Appl. Opt. 43(23), 4474–4481 (2004). [CrossRef] [PubMed]
  2. D. C. Zimmerman, “Feasibility studies for the alignment of the Thirty Meter Telescope,” Appl. Opt. 49(18), 3485–3498 (2010). [CrossRef] [PubMed]
  3. H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, 3rd ed., D. Malacara, ed. (John Wiley & Sons, 2007).
  4. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004). [CrossRef]
  5. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005). [CrossRef] [PubMed]
  6. G. Olczak and C. Merle, “Polarization modulated image conjugate piston sensing and phase retrieval system,” ITT Manufacturing Enterprises, Inc., US Patent 7,864,333 (2011)
  7. F. Shi, D. C. Redding, A. E. Lowman, C. W. Bowers, L. A. Burns, P. Petrone, C. M. Ohara, and S. A. Basinger, “Segmented mirror coarse phasing with a dispersed fringe sensor: experiment on NGST’s wavefront control testbed,” Proc. SPIE 4850, 318–328 (2003). [CrossRef]
  8. W. Zhao and G. Cao, “Active cophasing and aligning testbed with segmented mirrors,” Opt. Express 19(9), 8670–8683 (2011). [CrossRef] [PubMed]
  9. S. P. Walborn, M. O. Terra Cunha, S. Pa’dua, and C. H. Monken, “Double-slit quantum eraser,” Phys. Rev. A 65(3), 033818 (2002). [CrossRef]
  10. M. P. Kothiyal and C. Delisle, “Shearing interferometer for phase shifting interferometry with polarization phase shifter,” Appl. Opt. 24(24), 4439–4442 (1985). [CrossRef] [PubMed]
  11. S. Helen, M. P. Kothiyal, and R. S. Sirohi, “Achromatic phase-shifting by a rotating polarizer,” Opt. Commun. 154(5-6), 249–254 (1998). [CrossRef]
  12. M. Roy, P. Svahn, L. Cherel, and C. J. R. Sheppard, “Geometric phase-shifting for low-coherence interference microscopy,” Opt. Lasers Eng. 37(6), 631–641 (2002). [CrossRef]
  13. M. Roy and P. Hariharan, “White-light geometric phase interferometer for surface profiling,” Proc. SPIE 2544, 64–73 (1995). [CrossRef]
  14. M. R. Bolcar and J. R. Fienup, “Method of phase diversity in multi-aperture systems utilizing individual sub-aperture control,” Proc. SPIE 5896, 126–133 (2005).
  15. C. L. Koliopoulos, “Simultaneous phase-shift interferometer,” Proc. SPIE 1531, 119–127 (1992). [CrossRef]
  16. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping, Theory Algorithms, and Software (John Wiley and Sons, Inc. 1998)
  17. L. Koechlin, P. R. Lawson, D. Mourard, A. Blazit, D. Bonneau, F. Morand, Ph. Stee, I. Tallon-Bosc, and F. Vakili, “Dispersed fringe tracking with the multi-ro apertures of the Grand Interféromètre à 2 Télescopes,” Appl. Opt. 35(16), 3002–3009 (1996). [CrossRef] [PubMed]
  18. J. A. Spechler, D. J. Hoppe, N. Sigrist, F. Shi, B.-J. Seo, and S. Bikkannavar, “Advanced DFS: a dispersed fringe sensing algorithm insensitive to small calibration errors,” Proc. SPIE 7731, 773155 (2010).
  19. G. Olczak, “Recent advances in wavefront sensing at ITT,” ITT Internal Report (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited