OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3773–3780

Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser

Shinji Matsuo, Koji Takeda, Tomonari Sato, Masaya Notomi, Akihiko Shinya, Kengo Nozaki, Hideaki Taniyama, Koichi Hasebe, and Takaaki Kakitsuka  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3773-3780 (2012)
http://dx.doi.org/10.1364/OE.20.003773


View Full Text Article

Enhanced HTML    Acrobat PDF (1093 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a wavelength-scale embedded active-region photonic-crystal laser using lateral p-i-n structure. Zn diffusion and Si ion implantation are used for p- and n-type doping. Room-temperature continuous-wave lasing behavior is clearly observed from the injection current dependence of the output power, 3dB-bandwidth of the peak, and lasing wavelength. The threshold current is 390 μA and the estimated effective threshold current is 9.4 μA. The output power in output waveguide is 1.82 μW for a 2.0-mA current injection. These results indicate that the embedded active-region structure effectively reduce the thermal resistance. Ultrasmall electrically driven lasers are an important step towards on-chip photonic network applications.

© 2012 OSA

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(230.5298) Optical devices : Photonic crystals
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Optoelectronics

History
Original Manuscript: January 3, 2012
Revised Manuscript: January 25, 2012
Manuscript Accepted: January 25, 2012
Published: January 31, 2012

Citation
Shinji Matsuo, Koji Takeda, Tomonari Sato, Masaya Notomi, Akihiko Shinya, Kengo Nozaki, Hideaki Taniyama, Koichi Hasebe, and Takaaki Kakitsuka, "Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser," Opt. Express 20, 3773-3780 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3773


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett.17(3), 109–111 (1970). [CrossRef]
  2. Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Yu. V. Zhilyaev, E. P. Morozov, E. L. Portnoi, and V. G. Trofim, “Investigation of the influence of the AlAs–GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Fiz. Tekh. Poluprovodn.4, 1826 (1970).
  3. F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett.55(3), 221–222 (1989). [CrossRef]
  4. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008). [CrossRef]
  5. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008). [CrossRef]
  6. D. A. B. Miller, “Device requirements for optical Interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  7. S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express19(3), 2242–2250 (2011). [CrossRef] [PubMed]
  8. http://www.itrs.net/Links/2007ITRS/Home2007.htm .
  9. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron.12(6), 1699–1705 (2006). [CrossRef]
  10. M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” IET Circuits, Devices Syst.5(2), 84–93 (2011). [CrossRef]
  11. M. Notomi, “Strong light confinement with periodicity,” Proc. IEEE99, 1768–1779 (2011).
  12. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics1(1), 49–52 (2007). [CrossRef]
  13. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express15(25), 17206–17213 (2007). [CrossRef] [PubMed]
  14. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  15. M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett.90(17), 171122 (2007). [CrossRef]
  16. C. M. Long, A. V. Giannopoulos, and K. D. Choquette, “Modified spontaneous emission from laterally injected photonic crystal emitter,” Electron. Lett.45(4), 227–228 (2009). [CrossRef]
  17. B. Ellis, T. Sarmiento, M. Mayer, B. Zhang, J. Harris, E. E. Haller, and J. Vuckovic, “Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction,” Appl. Phys. Lett.96(18), 181103 (2010). [CrossRef]
  18. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics4(9), 648–654 (2010). [CrossRef]
  19. K. Takeda, T. Sato, A. Shinya, K. Nozaki, C.-H. Chen, Y. Kawaguchi, H. Taniyama, M. Notomi, and S. Matsuo, “80°C continuous wave operation of photonic-crystal nanocavity lasers,” 23rd International Conference on Indium Phosphide and Related Materials, Berlin, May 2011.
  20. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express17(25), 22505–22513 (2009). [CrossRef] [PubMed]
  21. M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express16(23), 18657–18666 (2008). [CrossRef] [PubMed]
  22. G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity laser,” Appl. Phys. Lett.60(3), 304–306 (1992). [CrossRef]
  23. S. L. Chuang, Physics of Optoelectronic Devices (John Willey & Sons, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited