OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3787–3802

Calibration of the optical torque wrench

Francesco Pedaci, Zhuangxiong Huang, Maarten van Oene, and Nynke H. Dekker  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3787-3802 (2012)
http://dx.doi.org/10.1364/OE.20.003787


View Full Text Article

Enhanced HTML    Acrobat PDF (1352 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical torque wrench is a laser trapping technique that expands the capability of standard optical tweezers to torque manipulation and measurement, using the laser linear polarization to orient tailored microscopic birefringent particles. The ability to measure torque of the order of kBT (∼4 pN nm) is especially important in the study of biophysical systems at the molecular and cellular level. Quantitative torque measurements rely on an accurate calibration of the instrument. Here we describe and implement a set of calibration approaches for the optical torque wrench, including methods that have direct analogs in linear optical tweezers as well as introducing others that are specifically developed for the angular variables. We compare the different methods, analyze their differences, and make recommendations regarding their implementations.

© 2012 OSA

OCIS Codes
(200.4880) Optics in computing : Optomechanics
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: September 30, 2011
Revised Manuscript: December 15, 2011
Manuscript Accepted: December 15, 2011
Published: February 1, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Francesco Pedaci, Zhuangxiong Huang, Maarten van Oene, and Nynke H. Dekker, "Calibration of the optical torque wrench," Opt. Express 20, 3787-3802 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3787


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics5, 318–321 (2011). [CrossRef] [PubMed]
  2. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods5, 491–505 (2008). [CrossRef] [PubMed]
  3. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct.23, 247 (1994). [CrossRef] [PubMed]
  4. B. E. Funnell, T. A. Baker, and A. Kornberg, “In vitro assembly of a prepriming complex at the origin of the escherichia coli chromosome,” J. Biol. Chem.262, 10327–10334 (1987). [PubMed]
  5. L. F. Liu and J. C. Wang, “Supercoiling of the DNA template during transcription,” Proc. Natl. Acad. Sci. U.S.A.84, 7024–7027 (1987). [CrossRef] [PubMed]
  6. M. Yoshida, E. Muneyuki, and T. Hisabori, “ATP synthase, a marvellous rotary engine of the cell,” Nat. Rev. Mol. Cell Biol.2, 669–677 (2001). [CrossRef] [PubMed]
  7. S. Saroussi and N. Nelson, “The little we know on the structure and machinery of V-ATPase,” J. Exp. Biol.212, 1604–1610 (2009). [CrossRef] [PubMed]
  8. Y. Sowa and R. M. Berry, “Bacterial flagellar motor,” Q. Rev. Biophys.41, 103–132 (2008). [CrossRef] [PubMed]
  9. J. Lipfert, J. W. J. Kerssemakers, T. Jager, and N. H. Dekker, “Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments,” Nat. Methods7, 977–980 (2010). [CrossRef] [PubMed]
  10. M. E. J. Friese, T. A. Nieminem, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394, 348–350 (1998). [CrossRef]
  11. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5, 343–348 (2011). [CrossRef]
  12. A. Celedon, I. M. Nodelman, B. Wildt, R. Dewan, P. Searson, D. Wirtz, G. D. Bowman, and S. X. Sun, “Magnetic tweezers measurement of single molecule torque,” Nano Lett.9, 1720–1725 (2009). [CrossRef] [PubMed]
  13. A. LaPorta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett.92, 190801 (2004).
  14. J. Inman, S. Forth, and M. Wang, “Passive torque wrench and angular position detection using a single-beam optical trap,” Opt. Lett.35, 2949–2951 (2010). [CrossRef] [PubMed]
  15. F. Pedaci, Z. Huang, M. v. Oene, S. Barland, and N. H. Dekker, “Excitable particle in an optical torque wrench,” Nat. Phys.7, 259–264 (2011). [CrossRef]
  16. S. Forth, C. Deufel, M. Y. Sheinin, B. Daniels, J. P. Sethna, and M. D. Wang, “Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules,” Phys. Rev. Lett.100, 148301 (2008). [CrossRef] [PubMed]
  17. B. C. Daniels, S. Forth, M. Y. Sheinin, M. D. Wang, and J. P. Sethna, “Discontinuities at the DNA supercoiling transition,” Phys. Rev. E80, 040901 (2009). [CrossRef]
  18. S. Forth, C. Deufel, S. S. Patel, and M. D. Wang, “Direct measurements of torque during Holliday junction migration,” Biophys. J.101, L05–L07 (2011). [CrossRef]
  19. K. Visscher and S. M. Block, “Versatile optical traps with feedback control,” Method Enzymol.298, 460–489 (1998). [CrossRef]
  20. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum.73, 1687 (2002). [CrossRef]
  21. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75, 594–612 (2004). [CrossRef]
  22. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75, 2787–2809 (2004). [CrossRef]
  23. C. Deufel and M. D. Wang, “Detection of forces and displacements along the axial direction in an optical trap,” Biophys. J.90, 657–667 (2006). [CrossRef]
  24. B. Gutierrez-Medina, J. O. L. Andreasson, W. J. Greenleaf, A. LaPorta, and S. M. Block, “An optical apparatus for rotation and trapping,” Method Enzymol.475, 377–404 (2010). [CrossRef]
  25. R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE34, 351–357 (1946). [CrossRef]
  26. C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, and M. D. Wang, “Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection,” Nat. Methods4, 223–225 (2007). [CrossRef] [PubMed]
  27. Z. Huang, F. Pedaci, M. Wiggin, M. v. Oene, and N. H. Dekker, “Electron beam fabrication of micron-scale birefringent quartz particles for use in optical trapping,” ACS Nano5, 1418–1427 (2011). [CrossRef] [PubMed]
  28. W. J. Greenleaf, M. T. Woodside, E. A. Abbondanzieri, and S. M. Block, “Passive all-optical force clamp for high-resolution laser trapping,” Phys. Rev. Lett.95, 208102 (2005). [CrossRef] [PubMed]
  29. O. M. Maragò, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, “FemtoNewton force sensing with optically trapped nanotubes,” Nano Lett.8, 3211–3216 (2008). [CrossRef] [PubMed]
  30. P. J. Reece, W. J. Toe, F. Wang, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Characterization of semiconductor nanowires using optical tweezers,” Nano Lett.11, 2375–2381 (2011). [CrossRef] [PubMed]
  31. S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum.77, 103101 (2006). [CrossRef]
  32. P. Reimann, C. V. den Broeck, H. Linke, P. Hanggi, J. M. Rubi, and A. Pérez-Madrid, “Giant acceleration of free diffusion by use of tilted periodic potentials,” Phys. Rev. Lett.87, 010602 (2001). [CrossRef] [PubMed]
  33. K. S. Asakia and S. A. Mari, “Diffusion coefficient and mobility of a brownian particle in a tilted periodic potential,” J. Phys. Soc. Jpn.74, 2226–2232 (2005). [CrossRef]
  34. M. M. Tirado and J. Garciadelatorre, “Rotational-dynamics of rigid, symmetric top macromolecules; application to circular-cylinders,” J. Chem. Phys.73, 198–1993 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited