OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 3967–3974

Spatial coherence of electron bunches extracted from an arbitrarily shaped cold atom electron source

Sebastian D. Saliba, Corey T. Putkunz, David V. Sheludko, Andrew J. McCulloch, Keith A. Nugent, and Robert E. Scholten  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 3967-3974 (2012)
http://dx.doi.org/10.1364/OE.20.003967


View Full Text Article

Enhanced HTML    Acrobat PDF (1068 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the spatial coherence properties of a cold atom electron source in the framework of a quasihomogeneous wavefield. The model is used as the basis for direct measurements of the transverse spatial coherence length of electron bunches extracted from a cold atom electron source. The coherence length is determined from the measured visibility of a propagated electron distribution with a sinusoidal profile of variable spatial frequency. The electron distribution was controlled via the intensity profile of an atomic excitation laser beam patterned with a spatial light modulator. We measure a lower limit to the coherence length at the source of lc = 7.8 ± 0.9 nm.

© 2012 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.1640) Coherence and statistical optics : Coherence
(110.4980) Imaging systems : Partial coherence in imaging
(140.3300) Lasers and laser optics : Laser beam shaping
(080.5084) Geometric optics : Phase space methods of analysis

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: January 10, 2012
Manuscript Accepted: January 25, 2012
Published: February 1, 2012

Citation
Sebastian D. Saliba, Corey T. Putkunz, David V. Sheludko, Andrew J. McCulloch, Keith A. Nugent, and Robert E. Scholten, "Spatial coherence of electron bunches extracted from an arbitrarily shaped cold atom electron source," Opt. Express 20, 3967-3974 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-3967


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Henderson and P. N. T. Unwin, “Three-dimensional model of purple membrane obtained by electron microscopy,” Nature257, 28–32 (1975). [CrossRef] [PubMed]
  2. B. G. Levi, “Focus on improving transmission electron microscopes starts to pay off,” Phys. Today63, 15–19 (2010). [CrossRef]
  3. H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C. Y. Ruan, and A. H. Zewail, “Direct imaging of transient molecular structures with ultrafast diffraction,” Science291, 458–463 (2001). [CrossRef] [PubMed]
  4. J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, and L. Blaszczyk, “Femtosecond electron diffraction for direct measurement of ultrafast atomic motions,” Appl. Phys. Lett.83, 1044 (2003). [CrossRef]
  5. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science302, 1382–1385 (2003). [CrossRef] [PubMed]
  6. H. M. Quiney and K. A. Nugent, “Biomolecular imaging and electronic damage using X-ray free-electron lasers,” Nat. Phys.7, 142–146 (2011). [CrossRef]
  7. 2.M. M. Seibert, T. Ekeberg, F. R. N. C. Maia, M. Svenda, J. Andreasson, O. Jonsson, D. Odic, B. Iwan, A. Rocker, D. Westphal, M. Hantke, D. P. DePonte, A. Barty, J. Schulz, L. Gumprecht, N. Coppola, A. Aquila, M. Liang, T. A. White, A. Martin, C. Caleman, S. Stern, C. Abergel, V. Seltzer, J.-M. Claverie, C. Bostedt, J. D. Bozek, S. Boutet, A. A. Miahnahri, M. Messerschmidt, J. Krzywinski, G. Williams, K. O. Hodgson, M. J. Bogan, C. Y. Hampton, R. G. Sierra, D. Starodub, I. Andersson, S. Bajt, M. Barthelmess, J. C. H. Spence, P. Fromme, U. Weierstall, R. Kirian, M. Hunter, R. Bruce Doak, Stefano Marchesini, Stefan P. Hau-Riege, Matthias Frank, Robert L. Shoeman, Lukas Lomb, Sascha W. Epp, Robert Hartmann, Daniel Rolles, A. Rudenko, C. Schmidt, L. Foucar, N. Kimmel, P. Holl, B. Rudek, B. Erk, A. Homke, C. Reich, D. Pietschner, G. Weidenspointner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, I. Schlichting, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.-U. Kuhnel, R. Andritschke, C.-D. Schroter, F. Krasniqi, M. Bott, S. Schorb, Da. Rupp, M. Adolph, T. Gorkhover, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, H. N. Chapman, and J. Hajdu, “Single mimivirus particles intercepted and imaged with an X-ray laser,” Nature470, 78–81 (2011). [CrossRef] [PubMed]
  8. P. Piot, “Review of experimental results on high-brightness photo-emission electron sources,” in The Physics and Applications of High Brightness Electron Beams, J. Rosenzweig, ed. (World Scientific, 2003), pp. 127–142. [CrossRef]
  9. N. de Jonge, M. Allioux, J. T. Oostveen, K. B. Teo, and W. I. Milne, “Optical performance of carbon-nanotube electron sources,” Phys. Rev. Lett.94, 186807 (2005). [CrossRef] [PubMed]
  10. T. van Oudheusden, P. L. E. M. Pasmans, S. B. van der Geer, M. J. de Loos, M. J. van der Wiel, and O. J. Luiten, “Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction,” Phys. Rev. Lett.105, 264801 (2010). [CrossRef]
  11. B. J. Claessens, S. B. van der Geer, G. Taban, E. J. D. Vredenbregt, and O. J. Luiten, “Ultracold electron source,” Phys. Rev. Lett.95, 164801 (2005). [CrossRef] [PubMed]
  12. S. B. van der Geer, M. J. de Loos, E. J. D. Vredenbregt, and O. J. Luiten, “Ultracold electron source for single-shot, ultrafast electron diffraction,” Microsc. Microanal.15, 282 (2009). [CrossRef] [PubMed]
  13. A. J. McCulloch, D. V. Sheludko, S. D. Saliba, S. C. Bell, M. Junker, K. A. Nugent, and R. E. Scholten, “Arbitrarily shaped high-coherence electron bunches from cold atoms,” Nat. Phys.7, 785–788 (2011). [CrossRef]
  14. O. J. Luiten, B. J. Claessens, S. B. van der Geer, M. P. Reijnders, G. Taban, and E. J. D. Vredenbregt, “Ultracold electron sources,” Int. J. Mod. Phys. A22, 3882–3897 (2007). [CrossRef]
  15. D. Paterson, B. E. Allman, P. J. McMahon, J. Lin, N. Moldovan, K. A. Nugent, I. McNulty, C. T. Chantler, C. C. Retsch, T. H. K. Irving, and D. C. Mancini, “Spatial coherence measurement of X-ray undulator radiation,” Opt. Commun.195, 79–84 (2001). [CrossRef]
  16. K. A. Nugent, “Coherent methods in the x-ray sciences,” Adv. Phys.59, 1–99(99) (2010). [CrossRef]
  17. J. L. Roberts, C. D. Fertig, M. J. Lim, and S. L. Rolston, “Electron temperature of ultracold plasmas,” Phys. Rev. Lett.92, 253003 (2004). [CrossRef] [PubMed]
  18. W. H. Carter and E. Wolf, “Coherence and radiometry with quasihomogeneous planar sources,” J. Opt. Soc. Am.67, 785 (1977). [CrossRef]
  19. E. Wolf, “Coherence and radiometry,” J. Opt. Soc. Am.68, 6–17 (1978). [CrossRef]
  20. J. J. Lin, D. Paterson, A. G. Peele, P. J. McMahon, C. T. Chantler, K. A. Nugent, B. Lai, N. Moldovan, Z. Cai, D. C. Mancini, and I. McNulty, “Measurement of the spatial coherence function of undulator radiation using a phase mask,” Phys. Rev. Lett.90, 074801 (2003). [CrossRef] [PubMed]
  21. T. Gallagher, Rydberg Atoms (Cambridge University Press, 1994). [CrossRef]
  22. O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett.93, 094802 (2004). [CrossRef] [PubMed]
  23. M. A. Alonso, “Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles,” Adv. Opt. Photon.3, 272–365 (2011). [CrossRef]
  24. J. L. Hanssen, S. B. Hill, J. Orloff, and J. J. McClelland, “Magneto-optical-trap-based, high brightness ion source for use as a nanoscale probe,” Nano Lett.8, 2844–2850 (2008). [CrossRef] [PubMed]
  25. P. Gupta, S. Laha, C. E. Simien, H. Gao, J. Castro, T. C. Killian, and T. Pohl, “Electron-temperature evolution in expanding ultracold neutral plasmas,” Phys. Rev. Lett.99, 075005 (2007). [CrossRef] [PubMed]
  26. R. Côté, T. Pattard, and M. Weidemüller, “Special issue on Rydberg physics,” J. Phys. B38, (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited