OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4032–4038

Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings

Li Chen and Ronald M. Reano  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4032-4038 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (989 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An electric field sensor based on the indirect bonding of submicrometer thin films of lithium niobate to silicon microring resonators is presented using benzocyclobutene as an intermediate bonding layer. The hybrid material system combines the electro-optic functionality of lithium niobate with the high-index contrast of silicon waveguides, enabling compact and metal-free electric field sensors. A sensor is designed and fabricated using ion-sliced z-cut lithium niobate as the top cladding of a 20 μm radius silicon microring resonator. The optical quasi transverse magnetic mode is used to access the largest electro-optic coefficient in the lithium niobate. Optical characterization of the hybrid device results in a measured loaded quality factor of 13,000 in the infrared. Operation of the device as an electric field sensor is demonstrated by detecting the fringing fields from a microstrip electrical circuit operating at 1.86 GHz. The demonstrated sensitivity to electric fields is 4.5 V m-1 Hz-1/2.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.2090) Optical devices : Electro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: December 6, 2011
Revised Manuscript: January 12, 2012
Manuscript Accepted: January 27, 2012
Published: February 2, 2012

Li Chen and Ronald M. Reano, "Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings," Opt. Express 20, 4032-4038 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. M. N. Passaro, F. Dell'Olio, and F. De Leonardis, “Electromagnetic field photonic sensors,” Prog. Quantum Electron. 30(2-3), 45–73 (2006). [CrossRef]
  2. K. Yang, G. David, J.-G. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microw. Theory Tech. 48(2), 288–294 (2000). [CrossRef]
  3. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Sub-microwatt photonic microwave receiver,” IEEE Photon. Technol. Lett. 14(11), 1602–1604 (2002). [CrossRef]
  4. H. Togo, N. Shimizu, and T. Nagatsuma, “Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement,” IEICE Trans. Electron, E 90-C, 436–442 (2007).
  5. R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007). [CrossRef]
  6. H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7(4), 515–524 (2007). [CrossRef]
  7. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007). [CrossRef]
  8. H. Hu, R. Ricken, and W. Sohler, “Lithium niobate photonic wires,” Opt. Express 17(26), 24261–24268 (2009). [CrossRef] [PubMed]
  9. J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (1997). [CrossRef]
  10. Y. S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, and W. H. Steier, “Hybrid Si-LiNbO? microring electro-optically tunable resonators for active photonic devices,” Opt. Lett. 36(7), 1119–1121 (2011). [CrossRef] [PubMed]
  11. B. G. Yacobi, S. Martin, K. Davis, A. Hudson, and M. Hubert, “Adhesive bonding in microelectronics and photonics,” J. Appl. Phys. 91(10), 6227–6262 (2002). [CrossRef]
  12. F. Niklaus, G. Stemme, J.-Q. Lu, and R. J. Gutmann, “Adhesive wafer bonding,” J. Appl. Phys. 99(3), 031101 (2006). [CrossRef]
  13. K. K. Wong, Properties of Lithium Niobate (INSPEC, London, 2002).
  14. M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B 74(4-5), 407–414 (2002). [CrossRef]
  15. A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, “Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,” Appl. Phys. Lett. 74(21), 3197–3199 (1999). [CrossRef]
  16. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009). [CrossRef] [PubMed]
  17. P. Sun and R. M. Reano, “Low-power optical bistability in a free-standing silicon ring resonator,” Opt. Lett. 35(8), 1124–1126 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited