OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4056–4066

Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns

Jung Woo Leem, Yunhae Yeh, and Jae Su Yu  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4056-4066 (2012)
http://dx.doi.org/10.1364/OE.20.004056


View Full Text Article

Enhanced HTML    Acrobat PDF (3494 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We fabricated surface nanostructures with different pillar and cone shapes on glass substrates using thermally dewetted gold (Au) nanoparticles as etch masks by dry etching. Their optical total transmittance characteristics, together with theoretical predictions using rigorous coupled-wave analysis simulation, and wetting behaviors were investigated. The nanostructured glass substrates strongly enhanced the surface transmission compared to the flat glass substrate. The glass nanocones with a linearly graded effective refractive index profile exhibited better transmission properties than the glass nanopillars due to the lower surface reflectance, thus leading to higher average transmittance with increasing their height. For the glass nanocones with a period of 106 ± 39 nm at the Au film thickness of 5 nm, the higher average total transmittance (Tave) and solar weighted transmittance (SWT) of ~95.5 and ~95.8% at wavelengths of 300-1100 nm and the lower contact angle (θc) of 31° were obtained compared to the flat glass substrate (i.e., Tave~92.7%, SWT~92.7%, and θc~65°). The calculated total transmittance results showed a similar tendency to the experimental results.

© 2012 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Materials

History
Original Manuscript: December 19, 2011
Revised Manuscript: January 30, 2012
Manuscript Accepted: January 30, 2012
Published: February 2, 2012

Citation
Jung Woo Leem, Yunhae Yeh, and Jae Su Yu, "Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns," Opt. Express 20, 4056-4066 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4056


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt.43(35), 6407–6412 (2004). [CrossRef] [PubMed]
  2. A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Sel. Top. Quantum Electron.10(1), 107–114 (2004). [CrossRef]
  3. C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, and I. C. Chen, “Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires,” Chem. Phys. Lett.416(1-3), 75–78 (2005). [CrossRef]
  4. H. Mase, M. Kondo, and A. Matsuda, “Microcrystalline silicon solar cells fabricated on polymer substrate,” Sol. Energy Mater. Sol. Cells74(1-4), 547–552 (2002). [CrossRef]
  5. S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett.5(1), 39–42 (2009). [CrossRef]
  6. S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999). [CrossRef] [PubMed]
  7. P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE2776, 300–309 (1996). [CrossRef]
  8. N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett.97(19), 191912 (2010). [CrossRef]
  9. B. Päivänranta, P. K. Sahoo, E. Tocce, V. Auzelyte, Y. Ekinci, H. H. Solak, C. C. Liu, K. O. Stuen, P. F. Nealey, and C. David, “Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers,” ACS Nano5(3), 1860–1864 (2011). [CrossRef] [PubMed]
  10. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).
  11. A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol.2(6), 347–353 (2007). [CrossRef] [PubMed]
  12. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007). [CrossRef] [PubMed]
  13. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B99(4), 695–700 (2010). [CrossRef]
  14. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010). [CrossRef] [PubMed]
  15. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications,” Appl. Phys. B100(4), 891–896 (2010). [CrossRef]
  16. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008). [CrossRef]
  17. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006). [CrossRef] [PubMed]
  18. J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells95(8), 2221–2227 (2011). [CrossRef]
  19. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett.91(6), 061105 (2007). [CrossRef]
  20. J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011). [CrossRef]
  21. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008). [CrossRef] [PubMed]
  22. J. W. Leem, K. S. Chung, and J. S. Yu, “Antireflective properties of disordered Si SWSs with hydrophobic surface by thermally dewetted Pt nanomask patterns for Si-based solar cells,” Curr. Appl. Phys.12(1), 291–298 (2012). [CrossRef]
  23. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express18(12), 13063–13071 (2010). [CrossRef] [PubMed]
  24. H. Y. Koo, D. K. Yi, S. J. Yoo, and D. Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. (Deerfield Beach Fla.)16(3), 274–277 (2004). [CrossRef]
  25. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett.8(5), 1429–1433 (2008). [CrossRef] [PubMed]
  26. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010). [CrossRef] [PubMed]
  27. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).
  28. G. C. Park, Y. M. Song, J. H. Ha, and Y. T. Lee, “Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles,” J. Nanosci. Nanotechnol.11(7), 6152–6156 (2011). [CrossRef] [PubMed]
  29. L. K. Verma, M. Sakhuja, J. Son, A. J. Danner, H. Yang, H. C. Zeng, and C. S. Bhatia, “Self-cleaning and antireflective packaging glass for solar modules,” Renew. Energy36(9), 2489–2493 (2011). [CrossRef]
  30. J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun.29(6), 455–466 (2008). [CrossRef]
  31. A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. Photochem. Rev.1(1), 1–21 (2000). [CrossRef]
  32. P. Sharma, C. Y. Liu, C. F. Hsu, N. W. Liu, and Y. L. Wang, “Ordered arrays of Ag nanoparticles grown by constrained self-organization,” Appl. Phys. Lett.89(16), 163110 (2006). [CrossRef]
  33. J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007). [CrossRef]
  34. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981). [CrossRef]
  35. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express19(1), 297–305 (2011). [CrossRef] [PubMed]
  36. Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett.97(9), 093110 (2010). [CrossRef]
  37. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express19(27), 26308–26317 (2011). [CrossRef] [PubMed]
  38. SOPRA, http://www.sopra-sa.com , Accessed 1 Oct. (2011).
  39. H. Kikuta, H. Yoshida, and K. Iwata, “Ability and limitation of effective medium theory for subwavelength gratings,” Opt. Rev.2(2), 92–99 (1995). [CrossRef]
  40. K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000). [CrossRef]
  41. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  42. S.-H. Woo, Y. J. Park, D.-H. Chang, and C. K. Hwangbo, “Wideband antireflection coatings of porous MgF2 films by using glancing angle deposition,” J. Kor. Phys. Soc.51(94), 1501–1506 (2007). [CrossRef]
  43. G. P. Montgomery and N. A. Vaz, “Contrast ratios of polymer-dispersed liquid crystal films,” Appl. Opt.26(4), 738–743 (1987). [CrossRef] [PubMed]
  44. NREL’s Renewable Resource Data Center, http://rredc.nrel.gov/solar/spectra/am1.5 , Accessed 15 Oct. (2011).
  45. E. Hecht, Optic 4th ed. (Addison Wesley, 2002), Chap. 10.
  46. Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron.41(10), 771–777 (2009). [CrossRef]
  47. R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem.28(8), 988–994 (1936). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited