OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4168–4175

Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification

M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4168-4175 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3865 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The proof-of-concept of an infrared imaging tip by an array of infrared waveguides tapered as small as 2 μm is demonstrated. The fabrication is based on a high-pressure chemical fluid deposition technique to deposit precisely defined periodic arrays of Ge and Si waveguides within a microstructured optical fiber template made of silica to demonstrate the proposed concept at wavelengths of 10.64 µm and 1.55 µm, respectively. The essential features of the imaging system such as isolation between adjacent pixels, magnification, optical throughput, and image transfer characteristics are investigated. Near-field scanning at 3.39 μm wavelength using a single tapered Ge core is also demonstrated.

© 2012 OSA

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(110.3080) Imaging systems : Infrared imaging
(160.2290) Materials : Fiber materials
(160.1245) Materials : Artificially engineered materials

ToC Category:
Imaging Systems

Original Manuscript: December 21, 2011
Manuscript Accepted: January 24, 2012
Published: February 3, 2012

M. Krishnamurthi, J. R. Sparks, R. He, I. A. Temnykh, N. F. Baril, Z. Liu, P. J. A. Sazio, J. V. Badding, and V. Gopalan, "Array of tapered semiconductor waveguides in a fiber for infrared image transfer and magnification," Opt. Express 20, 4168-4175 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett.86(24), 241116 (2005). [CrossRef]
  2. R. Mendelsohn, E. P. Paschalis, P. J. Sherman, and A. L. Boskey, “IR microscopic imaging of pathological states and fracture healing of bone,” Appl. Spectrosc.54(8), 1183–1191 (2000). [CrossRef]
  3. B. T. Soifer, G. Neugebauer, K. Matthews, E. Egami, E. E. Becklin, A. J. Weinberger, M. Ressler, M. W. Werner, A. S. Evans, N. Z. Scoville, J. A. Surace, and J. J. Condon, “High resolution mid-infrared imaging of ultraluminous infrared galaxies,” Astron. J.119(2), 509–523 (2000). [CrossRef]
  4. J. F. Head and R. L. Elliott, “Infrared imaging: making progress in fulfilling its medical promise,” IEEE Eng. Med. Biol. Mag.21(6), 80–85 (2002). [CrossRef] [PubMed]
  5. D. J. Titman, “Applications of thermography in non-destructive testing of structures,” NDT Int.34(2), 149–154 (2001). [CrossRef]
  6. G. Reich, “Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications,” Adv. Drug Deliv. Rev.57(8), 1109–1143 (2005). [CrossRef] [PubMed]
  7. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett.74(4), 501–503 (1999). [CrossRef]
  8. C. A. Michaels, “Mid-infrared imaging with a solid immersion lens and broadband laser source,” Appl. Phys. Lett.90(12), 121131 (2007). [CrossRef]
  9. D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” J. Microelectromech. Syst.10(3), 450–459 (2001). [CrossRef]
  10. M. Shinoda, K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, N. Ide, M. Furuki, M. Takeda, Y. Akiyama, T. Shimouma, and M. Yamamoto, “High-density near-field optical disc recording,” Jpn. J. Appl. Phys.44(5B), 3537–3541 (2005). [CrossRef]
  11. Y. Kim, J. Zhang, and T. D. Milster, “GaP solid immersion lens based on diffraction,” Jpn. J. Appl. Phys.48(3), 03A047 (2009). [CrossRef]
  12. K. B. Cozier, D. A. Fletcher, G. S. Kino, C. F. Quate, and H. T. Soh, “Near field optical scanning system employing microfabricated solid immersion lens,” US Patent 6441359 (2002).
  13. F. Huth, M. Schnell, J. Wittborn, N. Ocelic, and R. Hillenbrand, “Infrared-spectroscopic nanoimaging with a thermal source,” Nat. Mater.10(5), 352–356 (2011). [CrossRef] [PubMed]
  14. M. M. Qazilbash, M. Brehm, G. O. Andreev, A. Frenzel, P. C. Ho, B.-G. Chae, B.-J. Kim, S. Yun, H.-T. Kim, A. Balatsky, O. Shpyrko, M. Maple, F. Keilmann, and D. Basov, “Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide,” Phys. Rev. B79(7), 075107 (2009). [CrossRef]
  15. I. Gannot, A. Goren, E. Rave, A. Katzier, V. Gopal, G. Revezin, and J. A. Harrington, “Thermal imaging through infrared fiber/waveguides bundles,” Proc. SPIE5317, 95 (2004).
  16. U. Gal, J. Harrington, M. Ben-David, C. Bledt, N. Syzonenko, and I. Gannot, “Coherent hollow-core waveguide bundles for thermal imaging,” Appl. Opt.49(25), 4700–4709 (2010). [CrossRef] [PubMed]
  17. G. Shvets, S. Trendafilov, J. B. Pendry, and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays,” Phys. Rev. Lett.99(5), 053903 (2007). [CrossRef] [PubMed]
  18. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics2(7), 438–442 (2008). [CrossRef]
  19. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science311(5767), 1583–1586 (2006). [CrossRef] [PubMed]
  20. E. Palik, Handbook of Optical Constants of Solids II (Academic Press, New York 1998).
  21. P. Mehta, M. Krishnamurthi, N. Healy, N. F. Baril, J. R. Sparks, P. J. A. Sazio, V. Gopalan, J. V. Badding, and A. C. Peacock, “Mid-infrared transmission properties of amorphous germanium optical fibers,” Appl. Phys. Lett.97(7), 071117 (2010). [CrossRef]
  22. N. F. Baril, B. Keshavarzi, J. R. Sparks, M. Krishnamurthi, I. A. Temnykh, P. J. A. Sazio, A. C. Peacock, A. Borhan, V. Gopalan, and J. V. Badding, “High-pressure chemical deposition for void-free filling of extreme aspect ratio templates,” Adv. Mater. (Deerfield Beach Fla.)22(41), 4605–4611 (2010). [CrossRef] [PubMed]
  23. N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Opt. Express18(8), 7596–7601 (2010). [CrossRef] [PubMed]
  24. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibres for photonics applications,” Appl. Phys. Lett.96(4), 041105 (2010). [CrossRef]
  25. J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater. (Deerfield Beach Fla.)23(14), 1647–1651 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited