OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4198–4205

Comparison of the nonlinear transmission performance of quasi-Nyquist WDM and reduced guard interval OFDM

Sean Kilmurray, Tobias Fehenberger, Polina Bayvel, and Robert I. Killey  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4198-4205 (2012)
http://dx.doi.org/10.1364/OE.20.004198


View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The nonlinear transmission performance of quasi-Nyquist wavelength-division multiplexing (qN-WDM) and reduced guard interval orthogonal frequency-division multiplexing (RGI-OFDM) using polarization-division multiplexing quadrature phase-shift-keying (PDM-QPSK) and quadrature amplitude modulation (PDM-QAM-8 and PDM-QAM-16) with high information spectral densities have been compared for the first time, both by simulations and analytically. The results show that both systems are able to reach similar maximum transmission distances of approximately 6700km, 2600km and 1100km over standard single-mode fibre for the spectral efficiencies of 3.43 bits/s/Hz, 5.25 bits/s/Hz and 7 bits/s/Hz respectively.

© 2012 OSA

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 28, 2011
Revised Manuscript: January 12, 2012
Manuscript Accepted: January 30, 2012
Published: February 6, 2012

Citation
Sean Kilmurray, Tobias Fehenberger, Polina Bayvel, and Robert I. Killey, "Comparison of the nonlinear transmission performance of quasi-Nyquist WDM and reduced guard interval OFDM," Opt. Express 20, 4198-4205 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4198


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Desurvire, “Capacity Demand and Technology Challenges for Lightwave Systems in the Next Two Decades,” J. Lightwave Technol.24, 4697–4710 (2006). [CrossRef]
  2. R. Freund, M. Nölle, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, G. Bosco, A. Carena, P. Poggiolini, L. Oxenløwe, M. Galili, H. C. H. Mulvad, M. Winter, D. Hillerkuss, R. Schmogrow, W. Freude, J. Leuthold, A. D. Ellis, F. C. G. Gunning, J. Zhao, P. Frascella, S. K. Ibrahim, and N. M. Suibhne, “Single-and multi-carrier techniques to build up Tb/s per channel transmission systems,” in Proc. ICTON, 2010, Paper Tu.D1.4.
  3. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of Nyquist-WDM and CO-OFDM in High-Speed PM-QPSK Systems,” IEEE Photon. Technol. Lett.22, 1129–1131 (2010). [CrossRef]
  4. E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. L. Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing,” in Proc. ECOC, 2010, Paper We.7.C.2.
  5. R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9x138 Gb/s Prefiltered PM-8QAM Signals Over 4000 km of Pure Silica-Core Fiber,” J. Lightwave Technol.29, 2310–2318 (2011). [CrossRef]
  6. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s Reduced-Guard-Interval CO-OFDM Transmission Over 2000 km of Ultra-Large-Area Fiber and Five 80-GHz-Grid ROADMs,” J. Lightwave Technol.29, 483–490 (2011). [CrossRef]
  7. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in Proc. ECOC, 2009, Supplement.
  8. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411, 1027–1030 (2001). [CrossRef] [PubMed]
  9. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol.28, 662–701 (2010). [CrossRef]
  10. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the Non-Linear Shannon Limit,” J. Lightwave Technol.28, 423–433 (2010). [CrossRef]
  11. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical Modeling of Nonlinear Propagation in Uncompensated Optical Transmission Links,” IEEE Photon. Technol. Lett.23, 742–744 (2011). [CrossRef]
  12. W. Shieh and X. Chen, “Information Spectral Efficiency and Launch Power Density Limits Due to Fiber Nonlinearity for Coherent Optical OFDM Systems,” IEEE Photon. J.3, 158–173 (2011). [CrossRef]
  13. E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in Proc. ECOC, 2011, Paper We.7.B.2.
  14. S. J. Savory, “Digital Coherent Optical Receivers: Algorithms and Subsystems,” IEEE J. Sel. Top. Quant.16, 1164–1179 (2010). [CrossRef]
  15. I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett.22, 631–633 (2010). [CrossRef]
  16. S. L. Jansen, B. Spinnler, I. Morita, S. Randel, and H. Tanaka, “100GbE: QPSK versus OFDM,” Opt. Fiber Technol.15, 407–413 (2009). [CrossRef]
  17. A. Barbieri, G. Colavolpe, T. Foggi, E. Forestieri, and G. Prati, “OFDM versus Single-Carrier Transmission for 100 Gbps Optical Communication,” J. Lightwave Technol.28, 2537–2551 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1: Fig. 2: Fig. 3:
 
Fig. 4:
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited