OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4232–4247

Inner- and outer-scale effects on the scintillation index of an optical wave propagating through moderate-to-strong non-Kolmogorov turbulence

Xiang Yi, Zengji Liu, and Peng Yue  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4232-4247 (2012)
http://dx.doi.org/10.1364/OE.20.004232


View Full Text Article

Enhanced HTML    Acrobat PDF (1006 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By use of the generalized von Kármán spectrum model that features both inner scale and outer scale parameters for non-Kolmogorov turbulence and the extended Rytov method that incorporates a modified amplitude spatial-frequency filter function under strong-fluctuation conditions, theoretical expressions are developed for the scintillation index of a horizontally propagating plane wave and spherical wave that are valid under moderate-to-strong irradiance fluctuations. Numerical results show that the obtained expressions also compare well with previous results in weak-fluctuation regimes. Based on these general models, the impacts of finite inner and outer scales on the scintillation index of an optical wave are examined under various non-Kolmogorov fluctuation conditions.

© 2012 OSA

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: December 20, 2011
Revised Manuscript: January 29, 2012
Manuscript Accepted: January 29, 2012
Published: February 6, 2012

Citation
Xiang Yi, Zengji Liu, and Peng Yue, "Inner- and outer-scale effects on the scintillation index of an optical wave propagating through moderate-to-strong non-Kolmogorov turbulence," Opt. Express 20, 4232-4247 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4232


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. C. Andrews and R. L. Phillips, “Impact of scintillation on laser communication systems: recent advances in modeling,” Proc. SPIE4489, 23–34 (2002). [CrossRef]
  2. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Some limitations on optical communication reliability through Kolmogorov and non-Kolmogorov turbulence,” Opt. Commun.283(7), 1229–1235 (2010). [CrossRef]
  3. H. G. Sandalidis, “Performance of a laser Earth-to-satellite link over turbulence and beam wander using the modulated gamma-gamma irradiance distribution,” Appl. Opt.50(6), 952–961 (2011). [CrossRef] [PubMed]
  4. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Optical Engineering Press, 2005). [CrossRef]
  5. W. B. Miller, J. C. Ricklin, and L. C. Andrews, “Log-amplitude variance and wave structure function: a new perspective for Gaussian beams,” J. Opt. Soc. Am. A10(4), 661–672 (1993). [CrossRef]
  6. W. B. Miller, J. C. Ricklin, and L. C. Andrews, “Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam,” J. Opt. Soc. Am. A11(10), 2719–2726 (1994). [CrossRef]
  7. L. C. Andrews, R. L. Phillips, C. Y. Hopen, and M. A. Al-Habash, “Theory of optical scintillation,” J. Opt. Soc. Am. A16(6), 1417–1429 (1999). [CrossRef]
  8. K. J. Mayer, Effect of Inner Scale Atmospheric Spectrum Models on Scintillation in All Optical Turbulence Regimes, Ph.D. dissertation, University of Central Florida, 2007.
  9. D. T. Kyrazis, J. B. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE2120, 43–55 (1994). [CrossRef]
  10. M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE3126, 113–123 (1997). [CrossRef]
  11. A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence,” Atmos. Res.88(1), 66–77 (2008). [CrossRef]
  12. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE6457, 64570T–1–11 (2007).
  13. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for a Gaussian beam propagating through non-Kolmogorov weak turbulence,” IEEE Trans. Antenn. Propag.57(6), 1783–1788 (2009). [CrossRef]
  14. L. Tan, W. Du, J. Ma, S. Yu, and Q. Han, “Log-amplitude variance for a Gaussian-beam wave propagating through non-Kolmogorov turbulence,” Opt. Express18(2), 451–462 (2010). [CrossRef] [PubMed]
  15. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Scintillation index of optical plane wave propagating through non Kolmogorov moderate-strong turbulence,” Proc. SPIE6747, 67470B (2007). [CrossRef]
  16. P. Deng, X. H. Yuan, and D. X. Huang, “Scintillation of a laser beam propagation through non-Kolmogorov strong turbulence,” Opt. Commun., accepted for publication.
  17. J. Cang and X. Liu, “Average capacity of free-space optical systems for a partially coherent beam propagating through non-Kolmogorov turbulence,” Opt. Lett.36(7), 3335–3337 (2011). [CrossRef] [PubMed]
  18. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through Non-Kolmogorov turbulence,” Proc. SPIE6551, 65510E–1–12 (2007).
  19. L. Y. Cui, B. D. Xue, X. G. Cao, J. K. Dong, and J. N. Wang, “Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence,” Opt. Express18(20), 21269–21283 (2010). [CrossRef] [PubMed]
  20. B. D. Xue, L. Y. Cui, W. F. Xue, X. Z. Bai, and F. G. Zhou, “Generalized modified atmospheric spectral model for optical wave propagating through non-Kolmogorov turbulence,” J. Opt. Soc. Am. A28(5), 912–916 (2011). [CrossRef]
  21. L. Y. Cui, B. D. Xue, L. Cao, S. L. Zheng, W. F. Xue, X. Z. Bai, X. G. Cao, and F. G. Zhou, “Irradiance scintillation for Gaussian-beam wave propagating through weak non-Kolmogorov turbulence,” Opt. Express19(18), 16872–16884 (2011). [CrossRef] [PubMed]
  22. J. Cang and X. Liu, “Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model,” Opt. Express19(20), 19067–19077 (2011). [CrossRef] [PubMed]
  23. B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE2471, 1–17 (1995).
  24. L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Optical Engineering Press, Bellingham, Wash., 1998).
  25. R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, “Analysis of long-term measurements of laser propagation over the Chesapeake Bay,” Appl. Opt.48(12), 2388–2400 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 3 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited