OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4272–4279

Monolithic integration of a nanomechanical resonator to an optical microdisk cavity

Onur Basarir, Suraj Bramhavar, and Kamil L. Ekinci  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4272-4279 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (981 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a Silicon nano-opto-mechanical device in which a nanomechanical doubly-clamped beam resonator is integrated to an optical microdisk cavity. Small flexural oscillations of the beam cause intensity modulations in the circulating optical field in the nearby microdisk cavity. By monitoring the corresponding fluctuations in the cavity transmission via a fiber-taper, one can detect these oscillations with a displacement sensitivity approaching 10 fm·Hz−1/2 at an input power level of 50 μW. Both the in-plane and out-of-plane fundamental flexural resonances of the beam can be read out by this approach — the latter being detectable due to broken planar symmetry in the system. Access to multiple mechanical modes of the same resonator may be useful in some applications and may enable interesting fundamental studies.

© 2011 OSA

OCIS Codes
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(230.3990) Optical devices : Micro-optical devices
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Devices

Original Manuscript: August 24, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: December 15, 2011
Published: February 7, 2012

Onur Basarir, Suraj Bramhavar, and Kamil L. Ekinci, "Monolithic integration of a nanomechanical resonator to an optical microdisk cavity," Opt. Express 20, 4272-4279 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76, 061101 (2005). [CrossRef]
  2. H. G. Craighead, “Nanoelectromechanical systems,” Science290, 1532–1535 (2000). [CrossRef] [PubMed]
  3. J. Lawall and E. Kessler, “Michelson interferometry with 10 pm accuracy,” Rev. Sci. Instrum.71, 2669–2676 (2000). [CrossRef]
  4. T. Kouh, D. Karabacak, D. H. Kim, and K. L. Ekinci, “Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems,” Appl. Phys. Lett.86, 013106 (2005). [CrossRef]
  5. A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a michelson-sagnac interferometer,” Phys. Rev. Lett.107, 213604 (2011). [CrossRef] [PubMed]
  6. C. M. Hernandez, T. W. Murray, and S. Krishnaswamy, “Photoacoustic characterization of the mechanical properties of thin films,” Appl. Phys. Lett.80, 691–693 (2002). [CrossRef]
  7. A. Sampathkumar, T. W. Murray, and K. L. Ekinci, “Photothermal operation of high frequency nanoelectromechanical systems,” Appl. Phys. Lett.88, 223104 (2006). [CrossRef]
  8. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature444, 71–74 (2006). [CrossRef] [PubMed]
  9. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature444, 75–78 (2006). [CrossRef] [PubMed]
  10. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452, 72–75 (2008). [CrossRef] [PubMed]
  11. S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature460, 724–727 (2009). [CrossRef] [PubMed]
  12. I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high finesse optical microcavity,” Opt. Express17, 12813–12820 (2009). [CrossRef] [PubMed]
  13. D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Measurement of mechanical resonance and losses in nanometer scale silicon wires,” Appl. Phys. Lett.75, 920–922 (1999). [CrossRef]
  14. D. Karabacak, T. Kouh, and K. L. Ekinci, “Analysis of optical interferometric displacement detection in nanoelectromechanical systems,” J. Appl. Phys.98, 124309 (2005). [CrossRef]
  15. I. D. Vlaminck, J. Roels, D. Taillaert, D. V. Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett.90, 233116 (2007). [CrossRef]
  16. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature456, 480–484 (2008). [CrossRef] [PubMed]
  17. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nature Nanotech.4, 510–513 (2009). [CrossRef]
  18. O. Basarir, S. Bramhavar, G. Basilio-Sanchez, T. Morse, and K. L. Ekinci, “Sensitive micromechanical displacement detection by scattering evanescent optical waves,” Opt. Lett.35, 1792–1794 (2010). [CrossRef] [PubMed]
  19. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Near-field optical transducer for nanomechanical resonators,” Appl. Phys. Lett.97, 253114 (2010). [CrossRef]
  20. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321, 1172–1176 (2008). [CrossRef] [PubMed]
  21. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009). [CrossRef] [PubMed]
  22. M. Li, W. H. P. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett.103, 223901 (2009). [CrossRef]
  23. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 103601 (2009). [CrossRef] [PubMed]
  24. K. Srinivasan, H. Miao, M. T. Rakher, M. Davanco, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Letters11, 791–797 (2011). [CrossRef] [PubMed]
  25. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nature Phys.5, 909–914 (2009). [CrossRef]
  26. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462, 633–636 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited