OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4291–4296

Fabrication of three-dimensional microfluidic channels inside glass using nanosecond laser direct writing

Changning Liu, Yang Liao, Fei He, Yinglong Shen, Danping Chen, Ya Cheng, Zhizhan Xu, Koji Sugioka, and Katsumi Midorikawa  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4291-4296 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1585 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that fabrication of three-dimensional microfluidic channels embedded in glass can be achieved by using a Q-switched, frequency-doubled Nd:YAG laser. The processing mainly consists of two steps: (1) formation of hollow microfluidic channels in porous glass immersed in Rhodamine 6G dissolved in water by nanosecond laser ablation; and (2) postannealing of the fabricated porous glass sample at 1120 °C for consolidation of the sample. In particular, a bilayer microfluidic structure is created in glass substrate using this technique for showcasing its capability of three-dimensional structuring.

© 2012 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3540) Lasers and laser optics : Lasers, Q-switched
(160.2750) Materials : Glass and other amorphous materials
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Laser Microfabrication

Original Manuscript: November 21, 2011
Revised Manuscript: January 10, 2012
Manuscript Accepted: January 12, 2012
Published: February 7, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Changning Liu, Yang Liao, Fei He, Yinglong Shen, Danping Chen, Ya Cheng, Zhizhan Xu, Koji Sugioka, and Katsumi Midorikawa, "Fabrication of three-dimensional microfluidic channels inside glass using nanosecond laser direct writing," Opt. Express 20, 4291-4296 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature442(7101), 368–373 (2006). [CrossRef] [PubMed]
  2. A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Actuators B Chem.1(1-6), 244–248 (1990). [CrossRef]
  3. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst.9(1), 76–81 (2000). [CrossRef]
  4. M. S. Giridhar, K. Seong, A. Schülzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices,” Appl. Opt.43(23), 4584–4589 (2004). [CrossRef] [PubMed]
  5. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett.28(13), 1144–1146 (2003). [CrossRef] [PubMed]
  6. C. Lee, T. Chang, S. Wang, C. Chien, and C. Cheng, “Using femtosecond laser to fabricate highly precise interior three-dimensional microstructures in polymeric flow chip,” Biomicrofluid.4(4), 046502 (2010). [CrossRef]
  7. F. He, Y. Cheng, Z. Xu, Y. Liao, J. Xu, H. Sun, C. Wang, Z. Zhou, K. Sugioka, K. Midorikawa, Y. Xu, and X. Chen, “Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser,” Opt. Lett.35(3), 282–284 (2010). [CrossRef] [PubMed]
  8. J. Cheng, C. Wei, K. Hsu, and T. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sens. Actuators B Chem.99(1), 186–196 (2004). [CrossRef]
  9. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for lab-on-a-chip applications,” Appl. Surf. Sci.248(1-4), 172–176 (2005). [CrossRef]
  10. S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express18(20), 21490–21497 (2010). [CrossRef] [PubMed]
  11. A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010). [CrossRef] [PubMed]
  12. Y. Hanada, K. Sugioka, H. Kawano, I. S. Ishikawa, A. Miyawaki, and K. Midorikawa, “Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass,” Biomed. Microdevices10(3), 403–410 (2008). [CrossRef] [PubMed]
  13. Y. Hanada, K. Sugioka, I. Shihira-Ishikawa, H. Kawano, A. Miyawaki, and K. Midorikawa, “3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria,” Lab Chip11(12), 2109–2115 (2011). [CrossRef] [PubMed]
  14. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett.29(17), 2007–2009 (2004). [CrossRef] [PubMed]
  15. M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, “Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses,” Lab Chip9(2), 311–318 (2009). [CrossRef] [PubMed]
  16. F. Bragheri, L. Ferrara, N. Bellini, K. C. Vishnubhatla, P. Minzionil, R. Ramponi, R. Osellame, and I. Cristiani, “Optofluidic chip for single cell trapping and stretching fabricated by a femtosecond,” J. Biophoton.3, 234–243 (2010).
  17. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express2(3), 658–664 (2011). [CrossRef] [PubMed]
  18. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett.26(5), 277–279 (2001). [CrossRef] [PubMed]
  19. K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process.81(1), 1–10 (2005). [CrossRef]
  20. K. Sugioka, Y. Hanada, and K. Midorikawa, “Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev.4(3), 386–400 (2010). [CrossRef]
  21. F. Venturini, W. Navarrini, G. Resnati, P. Metrangolo, R. M. Vazquez, R. Osellame, and G. Cerullo, “Selective iterative etching of fused silica with gaseous hydrofluoric acid,” J. Phys. Chem. C114(43), 18712–18716 (2010). [CrossRef]
  22. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process.79(3), 605–612 (2004). [CrossRef]
  23. R. An, Y. Li, Y. Dou, D. Liu, H. Yang, and Q. Gong, “Water-assisted drilling of microfluidic chambers inside silica glass with femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process.83(1), 27–29 (2006). [CrossRef]
  24. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett.26(23), 1912–1914 (2001). [CrossRef] [PubMed]
  25. K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem.77(16), 5083–5088 (2005). [CrossRef] [PubMed]
  26. Y. Liao, Y. Ju, L. Zhang, F. He, Q. Zhang, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing,” Opt. Lett.35(19), 3225–3227 (2010). [CrossRef] [PubMed]
  27. Y. Ju, Y. Liao, L. Zhang, Y. Sheng, Q. Zhang, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining,” Microfluid. Nanofluid.11(1), 111–117 (2011). [CrossRef]
  28. J. Wang, H. Niino, and A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys., A Mater. Sci. Process.68(1), 111–113 (1999). [CrossRef]
  29. H. Niino, Y. Yasui, X. Ding, A. Narazaki, T. Sato, Y. Kawaguchi, and A. Yabe, “Surface micro-fabrication of silica glass by excimer laser irradiation of organic solvent,” J. Photochem. Photobiol. Chem.158(2-3), 179–182 (2003). [CrossRef]
  30. C. Vass, K. Osvay, and B. Hopp, “Fabrication of 150 nm period grating in fused silica by two-beam interferometric laser induced backside wet etching method,” Opt. Express14(18), 8354–8359 (2006). [CrossRef] [PubMed]
  31. D. Chen, H. Miyoshi, T. Akai, and T. Yazawa, “Colorless transparent fluorescence material: sintered porous glass containing rare-earth and transition-metal ions,” Appl. Phys. Lett.86(23), 231908 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited