OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4352–4359

Synchronization in small networks of time-delay coupled chaotic diode lasers

Y. Aviad, I. Reidler, M. Zigzag, M. Rosenbluh, and I. Kanter  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4352-4359 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Topologies of two, three and four time-delay-coupled chaotic semiconductor lasers are experimentally and theoretically found to show new types of synchronization. Generalized zero-lag synchronization is observed for two lasers separated by long distances even when their self-feedback delays are not equal. Generalized sub-lattice synchronization is observed for quadrilateral geometries while the equilateral triangle is zero-lag synchronized. Generalized zero-lag synchronization, without the limitation of precisely matched delays, opens possibilities for advanced multi-user communication protocols.

© 2012 OSA

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.3325) Lasers and laser optics : Laser coupling

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 13, 2011
Revised Manuscript: January 17, 2012
Manuscript Accepted: January 20, 2012
Published: February 7, 2012

Y. Aviad, I. Reidler, M. Zigzag, M. Rosenbluh, and I. Kanter, "Synchronization in small networks of time-delay coupled chaotic diode lasers," Opt. Express 20, 4352-4359 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Klein, N. Gross, M. Rosenbluh, W. Kinzel, L. Khaykovich, and I. Kanter, “Stable isochronal synchronization of mutually coupled chaotic lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(6), 066214 (2006). [CrossRef] [PubMed]
  2. O. D’Huys, R. Vicente, T. Erneux, J. Danckaert, and I. Fischer, “Synchronization properties of network motifs: influence of coupling delay and symmetry,” Chaos 18(3), 037116 (2008). [CrossRef] [PubMed]
  3. I. Kanter, M. Zigzag, A. Englert, F. Geissler, and W. Kinzel, “Synchronization of unidirectional time delay chaotic networks and the greatest common divisor,” Europhys. Lett. 93(6), 60003 (2011). [CrossRef]
  4. R. Vardi, A. Wallach, E. Kopelowitz, M. Abeles, S. Marom, and I. Kanter, “Synthetic reverberating activity patterns embedded in networks of cortical neurons,” Arxiv preprint arXiv:1201.0339 (2012).
  5. M. Nixon, M. Friedman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kanter, “Synchronized cluster formation in coupled laser networks,” Phys. Rev. Lett. 106(22), 223901 (2011). [CrossRef] [PubMed]
  6. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008). [CrossRef]
  7. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010). [CrossRef]
  8. A. Uchida, P. Davis, and S. Itaya, “Generation of information theoretic secure keys using a chaotic semiconductor laser,” Appl. Phys. Lett. 83(15), 3213–3215 (2003). [CrossRef]
  9. I. Kanter, M. Butkovski, Y. Peleg, M. Zigzag, Y. Aviad, I. Reidler, M. Rosenbluh, and W. Kinzel, “Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography,” Opt. Express 18(17), 18292–18302 (2010). [CrossRef] [PubMed]
  10. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002). [CrossRef] [PubMed]
  11. A. B. Cohen, B. Ravoori, T. E. Murphy, and R. Roy, “Using synchronization for prediction of high-dimensional chaotic dynamics,” Phys. Rev. Lett. 101(15), 154102 (2008). [CrossRef] [PubMed]
  12. B. Ravoori, A. B. Cohen, J. Sun, A. E. Motter, T. E. Murphy, and R. Roy, “Robustness of optimal synchronization in real networks,” Phys. Rev. Lett. 107(3), 034102 (2011). [CrossRef] [PubMed]
  13. B. Ravoori, A. B. Cohen, A. V. Setty, F. Sorrentino, T. E. Murphy, E. Ott, and R. Roy, “Adaptive synchronization of coupled chaotic oscillators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(5), 056205 (2009). [CrossRef] [PubMed]
  14. M. Peil, L. Larger, and I. Fischer, “Versatile and robust chaos synchronization phenomena imposed by delayed shared feedback coupling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 045201 (2007). [CrossRef] [PubMed]
  15. D. Lenstra, B. Verbeek, and A. Den Boef, “Coherence collapse in single-mode semiconductor lasers due to optical feedback,” IEEE J. Quantum Electron. 21(6), 674–679 (1985). [CrossRef]
  16. Y. Aviad, I. Reidler, W. Kinzel, I. Kanter, and M. Rosenbluh, “Phase synchronization in mutually coupled chaotic diode lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 025204 (2008). [CrossRef] [PubMed]
  17. M. Rosenbluh, Y. Aviad, E. Cohen, L. Khaykovich, W. Kinzel, E. Kopelowitz, P. Yoskovits, and I. Kanter, “Spiking optical patterns and synchronization,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046207 (2007). [CrossRef] [PubMed]
  18. M. Zigzag, M. Butkovski, A. Englert, W. Kinzel, and I. Kanter, “Zero-lag synchronization and multiple time delays in two coupled chaotic systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(3), 036215 (2010). [CrossRef] [PubMed]
  19. K. Hicke, O. D’Huys, V. Flunkert, E. Schöll, J. Danckaert, and I. Fischer, “Mismatch and synchronization: influence of asymmetries in systems of two delay-coupled lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 056211 (2011). [CrossRef] [PubMed]
  20. V. Ahlers, U. Parlitz, and W. Lauterborn, “Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7208–7213 (1998). [CrossRef]
  21. Y. Takiguchi, H. Fujino, and J. Ohtsubo, “Experimental synchronization of chaotic oscillations in externally injected semiconductor lasers in a low-frequency fluctuation regime,” Opt. Lett. 24(22), 1570–1572 (1999). [CrossRef] [PubMed]
  22. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980). [CrossRef]
  23. I. Kanter, E. Kopelowitz, R. Vardi, M. Zigzag, D. Cohen, and W. Kinzel, “Nonlocal mechanism for synchronization of time delay networks,” J. Stat. Phys. 145(3), 713–733 (2011). [CrossRef]
  24. S. Heiligenthal, T. Dahms, S. Yanchuk, T. Jüngling, V. Flunkert, I. Kanter, E. Schöll, and W. Kinzel, “Strong and weak chaos in nonlinear networks with time-delayed couplings,” Phys. Rev. Lett. 107(23), 234102 (2011). [CrossRef] [PubMed]
  25. V. Flunkert, S. Yanchuk, T. Dahms, and E. Schöll, “Synchronizing distant nodes: a universal classification of networks,” Phys. Rev. Lett. 105(25), 254101 (2010). [CrossRef] [PubMed]
  26. J. Zamora-Munt, C. Masoller, J. Garcia-Ojalvo, and R. Roy, “Crowd synchrony and quorum sensing in delay-coupled lasers,” Phys. Rev. Lett. 105(26), 264101 (2010). [CrossRef] [PubMed]
  27. J. Kestler, W. Kinzel, and I. Kanter, “Sublattice synchronization of chaotic networks with delayed couplings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(3), 035202 (2007). [CrossRef] [PubMed]
  28. C. González, C. Masoller, M. Torrent, and J. García-Ojalvo, “Synchronization via clustering in a small delay-coupled laser network,” Europhys. Lett. 79(6), 64003 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited