## Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells |

Optics Express, Vol. 20, Issue 4, pp. 4470-4483 (2012)

http://dx.doi.org/10.1364/OE.20.004470

Enhanced HTML Acrobat PDF (977 KB)

### Abstract

The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers.

© 2012 OSA

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.4180) Quantum optics : Multiphoton processes

(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

(250.5960) Optoelectronics : Semiconductor lasers

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: November 7, 2011

Revised Manuscript: December 1, 2011

Manuscript Accepted: December 10, 2011

Published: February 8, 2012

**Citation**

L. J. Salazar, D. A. Guzmán, F. J. Rodríguez, and L. Quiroga, "Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells," Opt. Express **20**, 4470-4483 (2012)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4470

Sort: Year | Journal | Reset

### References

- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
- Y. Shih, “Entangled biphoton source - property and preparation,” Rep. Prog. Phys.66, 1009–1044 (2003). [CrossRef]
- For a recent review see K. Edamatsu, “Entangled photons: Generation, observation, and characterization,” Jap. J. Appl. Phys.46, 7175–7187 (2007). [CrossRef]
- L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys.71, S274–S282 (1999). [CrossRef]
- A. Zeilinger, “Experiment and the foundations of quantum physics,” Rev. Mod. Phys.71, S288–S297 (1999). [CrossRef]
- L. Tian, P. Rabl, R. Blatt, and P. Zoller, “Interfacing quantum-optical and solid-state qubits,” Phys. Rev. Lett.92(24), 247902 (2004). [CrossRef] [PubMed]
- M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with Schrödinger-cat states,” Nature Phys.7, 799–804 (2011). [CrossRef]
- B. R. Mollow, “Two-photon absorption and field correlation functions,” Phys. Rev.175(5), 1555–1563 (1968). [CrossRef]
- G. S. Agarwal, “Field-correlation effects in multiphoton absorption processes,” Phys. Rev. A1(5), 1445–1459 (1970). [CrossRef]
- A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett.94(7), 073601 (2005). [CrossRef]
- S. Carrasco, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Spectral engineering of entangled two-photon states,” Phys. Rev. A73(6), 063802 (2006). [CrossRef]
- A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett.99(24), 243601 (2007). [CrossRef]
- J. Kojima and Q. -V. Nguyen, “Entangled biphoton virtual-state spectroscopy of the A2Σ2 – X2Π system of OH,” Chem. Phys. Lett.396(4–6), 323–328 (2004). [CrossRef]
- D. -I. Lee and T. Goodson, “Entangled photon absorption in an organic Porphyrin Dendrimer,” J. Phys. Chem. B110(51), 25582–25585 (2006). [CrossRef] [PubMed]
- M. R. Harpham, Ö. Süzer, C. Q. Ma, P. Bauerle, and T. Goodson, “Thiophene Dendrimers as entangled photon sensor materials,” J. Am. Chem. Soc.131(3), 973–979 (2009). [CrossRef] [PubMed]
- A. R. Guzman, M. R. Harpham, Ö. Süzer, M. M. Haley, and T. Goodson, “Spatial control of entangled two-photon absorption with organic chromophores,” J. Am. Chem. Soc.132(23), 7840–7841 (2010). [CrossRef] [PubMed]
- F. Lissandrin, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum theory of entangled-photon photoemission,” Phys. Rev. B69(16), 165317 (2004). [CrossRef]
- H.- Bing Fei, B. M. Jost, S. Popescu, B. E. A. Saleh, and M. C. Teich, “Entanglement-induced two-photon transparency,” Phys. Rev. Lett.78(9), 1679–1682 (1997). [CrossRef]
- B. E. A. Saleh, B. M. Jost, H.- Bing Fei, and M. C. Teich, “Entangled-photon virtual-state spectroscopy,” Phys. Rev. Lett.80(16), 3483–3486 (1998). [CrossRef]
- J. Peřina, B. E. A. Saleh, and M. C. Teich, “Multiphoton absorption cross section and virtual-state spectroscopy for the entangled n-photon state,” Phys. Rev. A57(5), 3972–3986 (1998). [CrossRef]
- A. Muthukrishnan, G. S. Agarwal, and M. O. Scully, “Inducing disallowed two-atom transitions with temporally entangled photons,” Phys. Rev. Lett.93(9), 093002 (2004). [CrossRef] [PubMed]
- F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nature Phys.5(4), 267–270 (2009). [CrossRef]
- F. Boitier, A. Godard, N. Dubreuil, P. Delaye, C. Fabre, and E. Rosencher, “Photon extrabunching in ultrabright twin beams measured by two-photon counting in a semiconductor,” Nature Commun.2, 425 (2011). [CrossRef]
- A. Hayat, P. Ginzburg, and M. Orenstein, “High-rate entanglement source via two-photon emission from semiconductor quantum wells,” Phys. Rev. B76(3), 035339 (2007). [CrossRef]
- R. J. Young, R. M. Stevenson, A. J. Hudson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Bell-Inequality violation with a triggered photon-pair source,” Phys. Rev. Lett., 102(3), 030406 (2009). [CrossRef] [PubMed]
- J. Svozilk, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express19(4), 3115–3123 (2011). [CrossRef]
- Y. M. Mikhailova, P. A. Volkov, and M. V. Fedorov, “Biphoton wave packets in parametric down-conversion: Spectral and temporal structure and degree of entanglement,” Phys. Rev. A78(6), 062327 (2008). [CrossRef]
- M. V. Fedorov, Y. M. Mikhailova, and P. A. Volkov, “Gaussian modelling and Schmidt modes of SPDC biphoton states,” J. Phys. B: At. Mol. Opt. Phys.42(17), 175503 (2009). [CrossRef]
- T. Nakanishi, H. Kobayashi, K. Sugiyama, and M. Kitano, “Full quantum analysis of two-photon absorption using two-photon wave function: Comparison of two-photon absorption with one-photon absorption,” J. Phys. Soc. Japan78(10), 104401–104405 (2009); quant-ph/0906.0213. [CrossRef]
- H. N. Spector, “Two-photon absorption in semiconducting quantum-well structures,” Phys. Rev. B35(11), 5876–5879 (1987). [CrossRef]
- A. Pasquarello and A. Quattropani, “Gauge-invariant two-photon transitions in quantum wells,” Phys. Rev. B38(9), 6206–6210 (1988). [CrossRef]
- A. Pasquarello and A. Quattropani, “Two-photon transitions to excitons in quantum wells,” Phys. Rev. B42(14), 9073–9079 (1990). [CrossRef]
- G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Exciton binding energy in quantum wells,” Phys. Rev. B26(4), 1974–1979 (1982). [CrossRef]
- S.-L. Chuang, S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Exciton Greens-function approach to optical absorption in a quantum well with an applied electric field,” Phys. Rev. B43(2), 1500–1509 (1991). [CrossRef]
- A. Shimizu, “Two-photon absorption in quantum-well structures near half the direct band gap,” Phys. Rev. B40(2), 1403–1406 (1989). [CrossRef]
- P. Harrison, Quantum Wells, Wires and Dots, third edition (John Wiley and Sons Ltd., Chichester, 2009).
- H. Oka, “Efficient selective two-photon excitation by tailored quantum-correlated photons,” Phys. Rev. A81(6), 063819 (2010); , “Efficient two-step up-conversion by quantum-correlated photon pairs,” Opt. Express18(25), 25839–25846 (2010) [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.