OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4630–4644

Side-illumination fluorescence critical angle: theory and application to F8BT-doped polymer optical fibers

Iñaki Bikandi, María Asunción Illarramendi, Joseba Zubia, Jon Arrue, and Felipe Jiménez  »View Author Affiliations

Optics Express, Vol. 20, Issue 4, pp. 4630-4644 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work we have analyzed theoretically and experimentally the critical angle for the emission generated in doped polymer optical fibers as a function of different launching conditions by using the side-illumination fluorescence technique. A theoretical model has been developed in order to explain the experimental measurements. It is shown that both the theoretical and experimental critical angles are appreciably higher than the meridional critical angle corresponding to the maximum acceptance angle for a single source placed at the fiber axis. This increase changes the value of several important parameters in the performance of active fibers. The analysis has been performed in polymer optical fibers doped with a conjugated polymer.

© 2012 OSA

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(300.2140) Spectroscopy : Emission

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 5, 2011
Revised Manuscript: January 23, 2012
Manuscript Accepted: January 23, 2012
Published: February 9, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Iñaki Bikandi, María Asunción Illarramendi, Joseba Zubia, Jon Arrue, and Felipe Jiménez, "Side-illumination fluorescence critical angle: theory and application to F8BT-doped polymer optical fibers," Opt. Express 20, 4630-4644 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zubia and J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol.7(2), 101–140 (2001). [CrossRef]
  2. T. Kaino, “Polymer optical fibers,” in Polymers for Lightwave and Integrated Optics (Marcel Dekker, Inc., 1992), chap. 1.
  3. O. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook: Optical Short Range Transmission Systems, 2nd ed. (Springer, 2008).
  4. D. Kalymnios, P. Scully, J. Zubia, and H. Poisel, “POF sensors overview,” in Proceedings of the 13th international plastic optical fibers conference, (Nürnberg, 2004), pp. 237–244.
  5. H. Liang, Z. Zheng, Z. Li, J. Xu, B. Chen, H. Zhao, Q. Zhang, and H. Ming, “Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber,” J. Appl. Polym. Sci.93(2), 681–685 (2004). [CrossRef]
  6. A. Tagaya, S. Teramoto, E. Nihei, K. Sasaki, and Y. Koike, “High-power and high-gain organic dye-doped polymer optical fiber amplifiers: novel techniques for preparation and spectral investigation,” Appl. Opt.36(3), 572–578 (1997). [CrossRef] [PubMed]
  7. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics4(7), 438–446 (2010). [CrossRef]
  8. C. Pulido and O. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B Chem.146(1), 190–194 (2010). [CrossRef]
  9. C. Pulido and O. Esteban, “Multiple fluorescence sensing with side-pumped tapered polymer fiber,” Sens. Actuators B Chem.157(2), 560–564 (2011). [CrossRef]
  10. H. Y. Tam, C.-F. Jeff-Pun, G. Zhou, X. Cheng, and M. L. V. Tse, “Special structured polymer fibers for sensing applications,” Opt. Fiber Technol.16(6), 357–366 (2010).
  11. M. Sheeba, K. J. Thomas, M. Rajesh, V. P. N. Nampoori, C. P. G. Vallabhan, and P. Radhakrishnan, “Multimode laser emission from dye doped polymer optical fiber,” Appl. Opt.46(33), 8089–8094 (2007). [CrossRef] [PubMed]
  12. G. V. Maier, T. N. Kopylova, V. A. Svetlichnyi, V. M. Podgaetskii, S. M. Dolotov, O. V. Ponomareva, A. E. Monich, and E. A. Monich, “Active polymer fibers doped with organic dyes: generation and amplification of coherent radiation,” Quantum Electron.37(1), 53–59 (2007). [CrossRef]
  13. J. Clark, L. Bazzana, D. Bradley, J. Gonzalez, G. Lanzani, D. Lidzey, J. Morgado, A. Nocivelli, W. Tsoi, T. Virgili, and R. Xia, “Blue polymer optical fiber amplifiers based on conjugated fluorine oligomers,” J. Nanophoton.2(1), 023504 (2008). [CrossRef]
  14. M. A. Illarramendi, J. Zubia, L. Bazzana, G. Durana, G. Aldabaldetreku, and J. R. Sarasua, “Spectroscopic characterization of plastic optical fibers doped with fluorene oligomers,” J. Lightwave Technol.27(15), 3220–3226 (2009). [CrossRef]
  15. R. J. Potter, “Transmission properties of optical fibers,” J. Opt. Soc. Am.51(10), 1079–1089 (1961). [CrossRef]
  16. Y. Xu, A. Cotteden, and N. B. Jones, “A theoretical evaluation of fibre-optic evanescent wave absorption in spectroscopy and sensors,” Opt. Lasers Eng.44(2), 93–101 (2006). [CrossRef]
  17. A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, 1983).
  18. W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+ -Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol.7(10), 1461–1465 (1989). [CrossRef]
  19. C. P. Achenbach and J. H. Cobb, “Computational studies of light acceptance and propagation in straight and curved multimodal active fibres,” J. Opt. A, Pure Appl. Opt.5(3), 239–249 (2003). [CrossRef]
  20. I. Ayesta, J. Arrue, F. Jimenez, M. A. Illarramendi, and J. Zubia, “Computational analysis of the amplification features of active plastic optical fibers,” Phys. Status Solidi A208(8), 1845–1848 (2011). [CrossRef]
  21. J. Arrue, F. Jimenez, I. Ayesta, M. A. Illarramendi, and J. Zubia, “Polymer-optical-fiber lasers and amplifiers doped with organic dyes,” Polymers3(3), 1162–1180 (2011). [CrossRef]
  22. Y. Zhao and S. Fleming, “Analysis of the effect of numerical aperture on Pr:ZBLAN upconversion fiber lasers,” Opt. Lett.23(5), 373–375 (1998). [CrossRef] [PubMed]
  23. M. J. Adams, An introduction to optical waveguides (John Wiley & Sons, 1981).
  24. R. J. Kruhlak and M. G. Kuzyk, “Side-illumination fluorescence spectroscopy. I. Principles,” J. Opt. Soc. Am. B16(10), 1749–1755 (1999). [CrossRef]
  25. R. J. Kruhlak and M. G. Kuzyk, “Side-illumination fluorescence spectroscopy. II. applications to squaraine-dye-doped polymer optical fibers,” J. Opt. Soc. Am. B16(10), 1756–1767 (1999). [CrossRef]
  26. L. Bazzana, G. Lanzani, R. Xia, J. Morgado, S. Schrader, and D. G. Lidzey, “Plastic optical fibers with embedded organic semiconductors for signal amplification,” in Proceedings of the 16th international plastic optical fibers conference, (Torino, Italy, 2007), 327–332.
  27. M. Aslund, S. D. Jackson, J. Canning, A. Teixeira, and K. Lyytikainen-Digweed, “The influence of skew rays on angular losses in air-cladd fibres,” Opt. Commun.262(1), 77–81 (2006). [CrossRef]
  28. G. E. Khalil, A. M. Adawi, A. M. Fox, A. Iraqi, and D. G. Lidzey, “Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers,” J. Chem. Phys.130(4), 044903 (2009). [CrossRef] [PubMed]
  29. C.-A. Bunge, R. Kruglov, and H. Poisel, “Rayleigh and Mie scattering in polymer optical fibers,” J. Lightwave Technol.24(8), 3137–3146 (2006). [CrossRef]
  30. M. A. Illarramendi, “Side-illumination scattering theory in step-index polymer optical fibers,” J. Opt. Soc. Am. B (to be published).
  31. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (Taylor and Francis, 2007).
  32. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, 1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited