OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4697–4709

Long vs. short-range orders in random subwavelength hole arrays

Frédéric Przybilla, Cyriaque Genet, and Thomas W. Ebbesen  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4697-4709 (2012)
http://dx.doi.org/10.1364/OE.20.004697


View Full Text Article

Enhanced HTML    Acrobat PDF (6692 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the progressive introduction of disorder in periodic subwavelength hole arrays. Two models of disorder are discussed from their associated Fourier transforms and correlation functions. The optical transmission properties of the corresponding arrays are closely related with the evolutions of structure factors, as experimentally detailed. Remarkably, the optical properties of random arrays are not in general equal to those of the single hole as a result of short-range correlations corresponding to hole-to-hole interactions. These correlations are due to packing constraints that are controlled through the careful generation of random patterns. For high density pattern, short-range order can take over long-range order associated with the periodic array.

© 2012 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1960) Diffraction and gratings : Diffraction theory
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: December 21, 2011
Manuscript Accepted: January 20, 2012
Published: February 9, 2012

Citation
Frédéric Przybilla, Cyriaque Genet, and Thomas W. Ebbesen, "Long vs. short-range orders in random subwavelength hole arrays," Opt. Express 20, 4697-4709 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Soukoulis, M. J. Velgakis, and E. N. Economou, “One-dimensional localization with correlated disorder,” Phys. Rev. B50, 5110–5118 (1994). [CrossRef]
  2. A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B72, 153102–153105 (2005). [CrossRef]
  3. D. Nau, A. Schönhardt, C. Bauer, A. Christ, T. Zentgraf, J. Kuhl, and H. Giessen, “Disorder issues in metallic photonic crystals,” Phys. Status Solidi B243, 231–2343 (2006). [CrossRef]
  4. N. Papasimakis, V. A. Fedotov, Y. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and the order-disorder transitions,” Phys. Rev. B80, 041102(R) (2009). [CrossRef]
  5. B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett.34, 401–403 (2009). [CrossRef] [PubMed]
  6. J. Bravo-Abad, A. I. Fernández-Domínguez, F. J. García-Vidal, and L. Martín-Moreno, “Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes,” Phys. Rev. Lett.99, 203905 (2007). [CrossRef]
  7. C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. A22, 998–1002 (2005). [CrossRef]
  8. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452, 728–731 (2008). [CrossRef] [PubMed]
  9. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010). [CrossRef]
  10. F. van Beijnum, C. Rétif, C. B. Smiet, and M. P. van Exter, “Transmission processes in random patterns of subwavelength holes,” Opt. Lett.36, 3666–3668 (2011). [CrossRef] [PubMed]
  11. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun.239, 61–66 (2004). [CrossRef]
  12. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express16, 9571–9579 (2008). [CrossRef] [PubMed]
  13. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett.91, 143901 (2003). [CrossRef] [PubMed]
  14. F. Przybilla, A. Degiron, J. Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Pure Appl. Opt.8, 458–463 (2006). [CrossRef]
  15. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. García-Vidal, L. Martín-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys.2, 120–123 (2006). [CrossRef]
  16. F. Przybilla, C. Genet, and T. W. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett.89, 121115 (2006). [CrossRef]
  17. A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105, 073902 (2010). [CrossRef] [PubMed]
  18. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66, 163–182 (1944). [CrossRef]
  19. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004). [CrossRef] [PubMed]
  20. K. L. van der Molen, K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory,” Phys. Rev. B72, 045421 (2005). [CrossRef]
  21. M. C. Hughes and R. Gordon, “Optical transmission properties and enhanced loss for randomly positioned apertures in a metal film,” Appl. Phys. B87, 239–242 (2007). [CrossRef]
  22. C. Sönnichsen, A. C. Duch, G. Steininger, M. Koch, G. von Plessen, and J. Feldmann, “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett.76, 140–142 (2000). [CrossRef]
  23. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett.94, 053901 (2005). [CrossRef] [PubMed]
  24. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett.95, 263902 (2005). [CrossRef]
  25. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett.4, 1003–1008 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited