OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4710–4725

Split-spectrum amplitude-decorrelation angiography with optical coherence tomography

Yali Jia, Ou Tan, Jason Tokayer, Benjamin Potsaid, Yimin Wang, Jonathan J. Liu, Martin F. Kraus, Hrebesh Subhash, James G. Fujimoto, Joachim Hornegger, and David Huang  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4710-4725 (2012)
http://dx.doi.org/10.1364/OE.20.004710


View Full Text Article

Enhanced HTML    Acrobat PDF (2055 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.

© 2012 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 23, 2011
Revised Manuscript: January 24, 2012
Manuscript Accepted: January 29, 2012
Published: February 9, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Yali Jia, Ou Tan, Jason Tokayer, Benjamin Potsaid, Yimin Wang, Jonathan J. Liu, Martin F. Kraus, Hrebesh Subhash, James G. Fujimoto, Joachim Hornegger, and David Huang, "Split-spectrum amplitude-decorrelation angiography with optical coherence tomography," Opt. Express 20, 4710-4725 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1–2), 43–48 (1995). [CrossRef]
  3. G. Hausler and M. W. Lindner, ““'Coherence radar” and 'spectral radar'–new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998). [CrossRef]
  4. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997). [CrossRef] [PubMed]
  5. U. H. P. Haberland, V. Blazek, and H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt.3(3), 259–266 (1998). [CrossRef]
  6. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  7. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  8. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  9. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett.22(14), 1119–1121 (1997). [CrossRef] [PubMed]
  10. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  11. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11(25), 3490–3497 (2003). [CrossRef] [PubMed]
  12. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006). [CrossRef] [PubMed]
  13. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  14. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt.13(6), 064003 (2008). [CrossRef] [PubMed]
  15. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express17(5), 4061–4073 (2009). [CrossRef] [PubMed]
  16. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1- um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007). [CrossRef] [PubMed]
  17. Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express15(12), 7538–7550 (2007). [CrossRef] [PubMed]
  18. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008). [CrossRef] [PubMed]
  19. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010). [CrossRef] [PubMed]
  20. R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt.15(2), 020502 (2010). [CrossRef] [PubMed]
  21. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express17(5), 4177–4188 (2009). [CrossRef] [PubMed]
  22. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17(26), 23736–23754 (2009). [CrossRef] [PubMed]
  23. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express17(24), 22190–22200 (2009). [CrossRef] [PubMed]
  24. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15(1), 016029 (2010). [CrossRef] [PubMed]
  25. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011). [CrossRef] [PubMed]
  26. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  27. R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011). [CrossRef] [PubMed]
  28. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt.15(2), 026011 (2010). [CrossRef] [PubMed]
  29. M. T. Tsai, T. T. Chi, H. L. Liu, F. Y. Chang, C. H. Yang, C. K. Lee, and C. C. Yang, “Microvascular imaging using swept-source optical coherence tomography with single-channel acquisition,” Appl. Phys. Express4(9), 097001 (2011). [CrossRef]
  30. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011). [CrossRef] [PubMed]
  31. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  32. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  33. A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010). [CrossRef] [PubMed]
  34. E. Jonathan, J. Enfield, and M. J. Leahy, “Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,” J Biophotonics4(9), 583–587 (2011). [PubMed]
  35. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express2(5), 1184–1193 (2011). [CrossRef] [PubMed]
  36. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997). [CrossRef] [PubMed]
  37. I. A. Hein and W. R. O’Brien., “Current time-domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-a review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control40(2), 84–102 (1993). [CrossRef] [PubMed]
  38. A. P. G. Hoeks, T. G. J. Arts, P. J. Brands, and R. S. Reneman, “Comparison of the performance of the RF cross correlation and Doppler autocorrelation technique to estimate the mean velocity of simulated ultrasound signals,” Ultrasound Med. Biol.19(9), 727–740 (1993). [CrossRef] [PubMed]
  39. J. C. Dainty, ed., Laser speckle and related phenomena (Springer-Verlag, New York, 1984).
  40. W. Li, C. T. Lancee, E. I. Cespedes, A. F. W. van der Steen, and N. Bom, “Decorrelation of intravascular ultrasound signals: A computer simulation study,” in Ultrasonics Symposium, 1997. Proceedings., 1997 IEEE(1997), pp. 1165–1168 vol.1162.
  41. D. A. Robinson, “The mechanics of human saccadic eye movement,” J. Physiol.174(2), 245–264 (1964). [PubMed]
  42. S. S. Hayreh, “Posterior ciliary artery circulation in health and disease: the Weisenfeld lecture,” Invest. Ophthalmol. Vis. Sci.45(3), 749–757, 748 (2004). [CrossRef] [PubMed]
  43. O. Arend, A. Remky, D. Evans, R. Stüber, and A. Harris, “Contrast sensitivity loss is coupled with capillary dropout in patients with diabetes,” Invest. Ophthalmol. Vis. Sci.38(9), 1819–1824 (1997). [PubMed]
  44. J. Zhao, D. A. Frambach, P. P. Lee, M. Lee, and P. F. Lopez, “Delayed macular choriocapillary circulation in age-related macular degeneration,” Int. Ophthalmol.19(1), 1–12 (1995). [CrossRef] [PubMed]
  45. N. M. Bressler, “Age-related macular degeneration is the leading cause of blindness,” JAMA291(15), 1900–1901 (2004). [CrossRef] [PubMed]
  46. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, and R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express2(6), 1504–1513 (2011). [CrossRef] [PubMed]
  47. K. V. Chalam, “Fundamentals and principles of ophthalmology.,” in Basic and Clinical Science Course. J. S. Weiss, ed. (American Academy of Ophthalmology, San Francisco, 2011), pp. 79–82.
  48. L. Laatikainen and J. Larinkari, “Capillary-free area of the fovea with advancing age,” Invest. Ophthalmol. Vis. Sci.16(12), 1154–1157 (1977). [PubMed]
  49. S. Roh and J. J. Weiter, “Retinal and choroidal circulation,” in Ophthalmology, M Yanoff, and J. S. Duker, eds. (Mo: Mosby Elsevier, St. Louis, 2008).
  50. R. H. W. Funk, “Blood supply of the retina,” Ophthalmic Res.29(5), 320–325 (1997). [CrossRef] [PubMed]
  51. P. J. Yim, P. L. Choyke, and R. M. Summers, “Gray-scale skeletonization of small vessels in magnetic resonance angiography,” IEEE Trans. Med. Imaging19(6), 568–576 (2000). [CrossRef] [PubMed]
  52. J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express2(4), 781–793 (2011). [CrossRef] [PubMed]
  53. R. Flower, E. Peiretti, M. Magnani, L. Rossi, S. Serafini, Z. Gryczynski, and I. Gryczynski, “Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells,” Invest. Ophthalmol. Vis. Sci.49(12), 5510–5516 (2008). [CrossRef] [PubMed]
  54. M. Kraus, M. Mayer, R. Bock, B. Potsaid, V. Manjunath, J. S. Duker, J. Hornegger, and J. G. Fujimoto, “Motion artifact correction in oct volume scans using image registration,” in Association for Research in Vision and Ophthalmology (ARVO, Fort Lauderdale 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (40716 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited