OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 4 — Feb. 13, 2012
  • pp: 4738–4746

Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals

Che Ju Hsu and Chia Rong Sheu  »View Author Affiliations


Optics Express, Vol. 20, Issue 4, pp. 4738-4746 (2012)
http://dx.doi.org/10.1364/OE.20.004738


View Full Text Article

Enhanced HTML    Acrobat PDF (1266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Liquid crystal (LC) lenses with circular hole-patterned electrodes possess the excellent capabilities of tunable focal lengths. In this paper, we demonstrate the performance of a specific LC lens with tunable coaxial bifocals (CB) synthesized via photopolymerization of LC cells. The characteristics of tunable CB are clearly exhibited when the voltage applied is continuously increased, eventually disappearing until only one focus is left when significantly higher voltages are applied. We simultaneously demonstrate two types of tunable CB LC lenses fabricated via different photocurable processes and determine their optical functions.

© 2012 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(220.3630) Optical design and fabrication : Lenses
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

History
Original Manuscript: January 3, 2012
Revised Manuscript: February 5, 2012
Manuscript Accepted: February 6, 2012
Published: February 9, 2012

Citation
Che Ju Hsu and Chia Rong Sheu, "Using photopolymerization to achieve tunable liquid crystal lenses with coaxial bifocals," Opt. Express 20, 4738-4746 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-4-4738


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006). [CrossRef] [PubMed]
  2. S. Somalingam, K. Dressbach, M. Hain, S. Stankovic, T. Tschudi, J. Knittel, and H. Richter, “Effective spherical aberration compensation by use of a nematic liquid-crystal device,” Appl. Opt.43(13), 2722–2729 (2004). [CrossRef] [PubMed]
  3. M. Ye, B. Wang, M. Kawamura, and S. Sato, “Image formation using liquid crystal lens,” Jpn. J. Appl. Phys.46(10A), 6776–6777 (2007). [CrossRef]
  4. H. C. Lin and Y. H. Lin, “A fast response and large electrically tunable-focusing imaging system based on switching of two modes of a liquid crystal lens,” Appl. Phys. Lett.97(6), 063505 (2010). [CrossRef]
  5. S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys.39(Part 1, No. 2A), 480–484 (2000). [CrossRef]
  6. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett.84(23), 4789–4791 (2004). [CrossRef]
  7. H. Ren and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett.82(1), 22–24 (2003). [CrossRef]
  8. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys.41(Part 2, No. 5B), L571–L573 (2002). [CrossRef]
  9. H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express17(6), 4782–4790 (2009). [CrossRef] [PubMed]
  10. F. C. Wippermann, P. Schreiber, A. Bräuer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE6501, 650109, 650109-9 (2007). [CrossRef]
  11. M. Hain, R. Glöckner, S. Bhattacharya, D. Dias, S. Stankovic, and T. Tschudi, “Fast switching liquid crystal lenses for a dual focus digital versatile disc pickup,” Opt. Commun.188(5-6), 291–299 (2001). [CrossRef]
  12. Y. J. Lee, Y. W. Kim, Y. K. Kim, C. J. Yu, J. S. Gwag, and J. H. Kim, “Microlens array fabricated using electrohydrodynamic instability and surface properties,” Opt. Express19(11), 10673–10678 (2011). [CrossRef] [PubMed]
  13. H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater.13(9), 732–738 (2003). [CrossRef]
  14. H. Choi, J. H. Park, J. Hong, and B. Lee, “Depth-enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys.43(8A), 5330–5336 (2004). [CrossRef]
  15. C. J. Hsu, C. Y. Huang, and C. R. Sheu, “Experimental analysis to avoid migrating zigzag lines occurring in homogeneously aligned liquid crystal lenses with a hole-patterned electrode,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)544(1), 185–191 (2011). [CrossRef]
  16. S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of optical properties on the device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys.35(Part 1, No. 9A), 4668–4672 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited