OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 4871–4886

Phytoplankton light absorption of cultures and natural samples: comparisons using two spectrophotometers

Puneeta Naik and Eurico J. D’Sa  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 4871-4886 (2012)
http://dx.doi.org/10.1364/OE.20.004871


View Full Text Article

Enhanced HTML    Acrobat PDF (1428 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we present laboratory measurements of phytoplankton absorption for cultures and natural water samples using two different spectrophotometers, an Ultrapath system and a double beam spectrophotometer equipped with an integrating sphere (Lambda 850). The Ultrapath system provides simplified optics with high throughput efficiency, portability, and is relatively less expensive in comparison to conventional spectrophotometers. A more robust algorithm for correction of pathlength amplification (β) for particles retained on filter paper was determined for Lambda 850 in comparison to the Ultrapath. The Lambda 850 β algorithm (ODs(λ) = 0.405 [ODf(λ)] + 0.475 [ODf(λ)]2 ; r2 = 0.973; n = 7395) showed species and size dependence as indicated by the LISST 100X and HPLC chlorophyll-a concentration data. A better agreement was observed between the two spectrophotometers for filter paper measurements (r2 = 0.991; slope = 0.958; n = 130 for cultures and r2 = 0.978; slope = 0.957; n = 349 for natural samples), than for suspensions (r2 = 0.960; slope = 0.915; n = 92 for cultures and r2 = 0.960; slope = 0.921; n = 27 for natural samples). The differences in measurement of suspensions between the spectrophotometers could be attributed to volume scattering function and acceptance angle of the waveguide detector.

© 2012 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 28, 2011
Revised Manuscript: February 4, 2012
Manuscript Accepted: February 6, 2012
Published: February 13, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Puneeta Naik and Eurico J. D’Sa, "Phytoplankton light absorption of cultures and natural samples: comparisons using two spectrophotometers," Opt. Express 20, 4871-4886 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-4871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sathyendranath, A. Longhurst, C. M. Caverhill, and T. Platt, “Regionally and seasonally differentiated primary production in the North Atlantic,” Deep-Sea Res.(I Oceanogr. Res. Pap.)42(10), 1773–1802 (1995). [CrossRef]
  2. M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr.42(1), 1–20 (1997). [CrossRef]
  3. G. Johnsen, O. Samset, L. Granskog, and E. Sakshaug, “In-vivo absorption characteristics in 10 classes of bloom-forming phytoplankton - taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis,” Mar. Ecol. Prog. Ser.105, 149–157 (1994). [CrossRef]
  4. C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr.7(2), 207–217 (1962). [CrossRef]
  5. H. G. Trüper and C. S. Yentsch, “Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria,” J. Bacteriol.94(4), 1255–1256 (1967). [PubMed]
  6. B. G. Mitchell, “Algorithms for determining the absorption coefficients for aquatic particulates using the quantitative filter technique,” in Ocean Optics X, SPIE (Proceedings of SPIE, 1990), 137–148.
  7. C. S. Yentsch and D. A. Phinney, “A bridge between ocean optics and microbial ecology,” Limnol. Oceanogr.34(8), 1694–1705 (1989). [CrossRef]
  8. D. A. Kiefer and J. B. Soohoo, “Spectral absorption by marine particles of coastal waters of Baja California,” Limnol. Oceanogr.27(3), 492–499 (1982). [CrossRef]
  9. M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the spectral absorption coefficients of phytoplankton in the sea,” Bull. Mar. Sci.37, 634–642 (1985).
  10. B. G. Mitchell and D. A. Kiefer, “Chlorophyll-a specific absorption and fluorescence excitation-spectra for light-limited phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.)35, 639–663 (1988).
  11. A. Bricaud and D. Stramski, “Spectral absorption-coefficients of living phytoplankton and non-algal biogenous matter - a comparison between the Peru upwelling area and the Sargasso Sea,” Limnol. Oceanogr.35(3), 562–582 (1990). [CrossRef]
  12. C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr.43(7), 1649–1660 (1998). [CrossRef]
  13. S. Tassan and G. M. Ferrari, “An alternative approach to absorption measurements of aquatic particles retained on filters,” Limnol. Oceanogr.40(8), 1358–1368 (1995). [CrossRef]
  14. B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved materials and phytoplankton for discrete water samples,” in Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Volume 4: Inherent optical properties: instruments, characterization, field measurements and data analysis protocols, (NASA Tech. Rep., Greenbelt, Maryland, 2003).
  15. N. B. Nelson and B. B. Prézelin, “Calibration of an integrating sphere for determining the absorption coefficient of scattering suspensions,” Appl. Opt.32(33), 6710–6717 (1993). [CrossRef] [PubMed]
  16. S. Q. Duntley, “The optical properties of diffusing materials,” J. Opt. Soc. Am.32(2), 61–70 (1942). [CrossRef]
  17. W. L. Butler, “Absorption of light by turbid materials,” J. Opt. Soc. Am.52(3), 292–299 (1962). [CrossRef]
  18. S. E. Lohrenz, “A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique,” J. Plankton Res.22(4), 639–657 (2000). [CrossRef]
  19. B. Arbones, F. G. Figueiras, and M. Zapata, “Determination of phytoplankton absorption coefficient in natural seawater samples: Evidence of a unique equation to correct the pathlength amplification on glass fiber filters,” Mar. Ecol. Prog. Ser.137, 293–304 (1996). [CrossRef]
  20. J. S. Cleveland and A. D. Weidemann, “Quantifying absorption by aquatic particles - a multiple-scattering correction for glass-fiber filters,” Limnol. Oceanogr.38(6), 1321–1327 (1993). [CrossRef]
  21. Z. V. Finkel and A. J. Irwin, “Light absorption by phytoplankton and the filter amplification correction: cell size and species effects,” J. Exp. Mar. Biol. Ecol.259(1), 51–61 (2001). [CrossRef] [PubMed]
  22. L. Moore, R. Goericke, and S. Chisholm, “Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties,” Mar. Ecol. Prog. Ser.116, 259–275 (1995). [CrossRef]
  23. T. G. Peacock, K. L. Carder, P. G. Coble, Z. P. Lee, and S. W. Hawes, “Long-path spectrometer for measuring gelbstoff absorption in clear waters,” Eos Trans. AGU75, 22 (1994).
  24. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic-matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr.26(1), 43–53 (1981). [CrossRef]
  25. E. J. D'Sa, R. G. Steward, A. Vodacek, N. V. Blough, and D. Phinney, “Determining optical absorption of colored dissolved organic matter in seawater with a liquid capillary waveguide,” Limnol. Oceanogr.44(4), 1142–1148 (1999). [CrossRef]
  26. M. Belz, P. Dress, A. Sukhitskiy, and S. Liu, “Linearity and effective optical pathlength of liquid waveguide capillary cells,” in Internal Standardization and Calibration Architectures for Chemical Sensors, (Proceedings of SPIE, Boston, MA, USA 1999), pp. 271–281.
  27. E. J. D'Sa and R. G. Steward, “Liquid capillary waveguide application in absorbance spectroscopy (reply to the comment by Byrne and Kaltenbacher),” Limnol. Oceanogr.46, 742–745 (2001).
  28. J. R. V. Zaneveld, R. Bartz, and J. C. Kitchen, “A reflective-tube absorption meter,” in Ocean Optics X, Proc. SPIE pp. 124–136 (1990).
  29. K. Fujiwara and K. Fuwa, “Liquid core optical fiber total reflection cell as a colorimetric detector for flow-injection analysis,” Anal. Chem.57(6), 1012–1016 (1985). [CrossRef]
  30. R. L. Miller, M. Belz, C. Del Castillo, and R. Trzaska, “Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlength, liquid core waveguide system,” Cont. Shelf Res.22(9), 1301–1310 (2002). [CrossRef]
  31. M. Belz, K. Larsen, and K. Klein, “Fiber optic sample cells for polychromatic detection of dissolved and particulate matter in natural waters,” in Advanced Environmental, Chemical, and Biological Sensing Technologies IV, (Proceedings of SPIE, Boston, MA, USA 2006).
  32. E. J. D'Sa, S. E. Lohrenz, C. L. Carroll, and H. Fein, “Liquid waveguide capillary flow cell for determining absorption of scattering suspensions: Comparison with an integrating sphere,” in Ocean Optics XIV, (Proceedings of SPIE, Hawaii, 1998).
  33. R. R. Guillard and J. H. Ryther, “Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran,” Can. J. Microbiol.8(2), 229–239 (1962). [CrossRef]
  34. R. Röttgers and S. Gehnke, “Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach,” to be published in Appl. Opt. 154472 (2011).
  35. Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol.168(1-4), 89–114 (2000). [CrossRef]
  36. L. Karp-Boss, L. Azevedo, and E. Boss, “LISST-100 measurements of phytoplankton size distribution: evaluation of the effects of cell shape,” Limnol. Oceanogr. Methods5, 396–406 (2007). [CrossRef]
  37. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Wozniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res., C, Oceans115(C8), C08024 (2010). [CrossRef]
  38. J. H. Ahn and S. B. Grant, “Size distribution, sources, and seasonality of suspended particles in southern California marine bathing waters,” Environ. Sci. Technol.41(3), 695–702 (2007). [CrossRef] [PubMed]
  39. Y. C. Agrawal, “The optical volume scattering function: Temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr.50(6), 1787–1794 (2005). [CrossRef]
  40. J. R. Nelson and C. Y. Robertson, “Detrital spectral absorption - laboratory studies of visible-light effects on phytodetritus absorption, bacterial spectral signal, and comparison to field-measurements,” J. Mar. Res.51(1), 181–207 (1993). [CrossRef]
  41. A. Morel and A. Bricaud, “Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. (I Oceanogr. Res. Pap.)28, 1375–1393 (1981).
  42. J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting-tube absorption meters,” in Ocean Optics XII, (Proceedings of SPIE, Bergen, Norway 1994), pp. 44–55.
  43. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons 1958) , Vol.84, pp. 198–199.
  44. D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt.42(18), 3634–3646 (2003). [CrossRef] [PubMed]
  45. Y. C. Agrawal, A. Whitmire, O. A. Mikkelsen, and H. C. Pottsmith, “Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction,” J. Geophys. Res., C, Oceans113(C4), C04023 (2008). [CrossRef]
  46. T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Tech Report (1972).
  47. A. Morel, “Chlorophyll-specific scattering coefficient of phytoplankton. A simplified theoretical approach,” Deep-Sea Res. (I Oceanogr. Res. Pap.)34(7), 1093–1105 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited