OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 4927–4938

Detection of elemental mercury by multimode diode laser correlation spectroscopy

Xiutao Lou, Gabriel Somesfalean, Sune Svanberg, Zhiguo Zhang, and Shaohua Wu  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 4927-4938 (2012)
http://dx.doi.org/10.1364/OE.20.004927


View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a method for elemental mercury detection based on correlation spectroscopy employing UV laser radiation generated by sum-frequency mixing of two visible multimode diode lasers. Resonance matching of the multimode UV laser is achieved in a wide wavelength range and with good tolerance for various operating conditions. Large mode-hops provide an off-resonance baseline, eliminating interferences from other gas species with broadband absorption. A sensitivity of 1 μg/m3 is obtained for a 1-m path length and 30-s integration time. The performance of the system shows promise for mercury monitoring in industrial applications.

© 2012 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3600) Lasers and laser optics : Lasers, tunable
(300.1030) Spectroscopy : Absorption
(300.6210) Spectroscopy : Spectroscopy, atomic

ToC Category:
Spectroscopy

History
Original Manuscript: January 3, 2012
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 3, 2012
Published: February 13, 2012

Citation
Xiutao Lou, Gabriel Somesfalean, Sune Svanberg, Zhiguo Zhang, and Shaohua Wu, "Detection of elemental mercury by multimode diode laser correlation spectroscopy," Opt. Express 20, 4927-4938 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-4927


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U.S. Environmental Protection Agency, “Mercury study report to congress, Vol. I: Executive Summary,” EPA-452/R-97–003 (December, 1997).
  2. http://www.epa.gov/CAMR/ .
  3. Ministry of Environmental Protection of China, “Emission standard of air pollutants for thermal power plants,” GB13223–2011 (July, 2011).
  4. J. H. Pavlish, E. A. Sondreal, M. D. Mann, E. S. Olson, K. C. Galbreath, D. L. Laudal, and S. A. Benson, “Status review of mercury control options for coal-fired power plants,” Fuel Process. Technol.82(2-3), 89–165 (2003). [CrossRef]
  5. D. L. Laudal, J. S. Thompson, J. H. Pavlish, L. A. Brickett, and P. Chu, “Use of continuous mercury monitors at coal-fired utilities,” Fuel Process. Technol.85(6-7), 501–511 (2004). [CrossRef]
  6. S. Sholupov, S. Pogarev, V. Ryzhov, N. Mashyanov, and A. Stroganov, “Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples,” Fuel Process. Technol.85(6-7), 473–485 (2004). [CrossRef]
  7. T. Hadeishi, D. A. Church, R. D. McLaughlin, B. D. Zak, M. Nakamura, and B. Chang, “Mercury monitor for ambient air,” Science187(4174), 348–349 (1975). [CrossRef] [PubMed]
  8. H. Edner, A. Sunesson, S. Svanberg, L. Unéus, and S. Wallin, “Differential optical absorption spectroscopy system used for atmospheric mercury monitoring,” Appl. Opt.25(3), 403–409 (1986). [CrossRef] [PubMed]
  9. E. D. Thoma, C. Secrest, E. S. Hall, D. Lee Jones, R. C. Shores, M. Modrak, R. Hashmonay, and P. Norwood, “Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring,” Atmos. Environ.43(3), 753–757 (2009). [CrossRef]
  10. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76(10), 1234–1236 (2000). [CrossRef]
  11. A. E. Carruthers, T. K. Lake, A. Shah, J. W. Allen, W. Sibbett, and K. Dholakia, “Single-scan spectroscopy of mercury at 253.7 nm by sum frequency mixing of violet and red microlensed diode lasers,” Opt. Commun.255(4-6), 261–266 (2005). [CrossRef]
  12. T. N. Anderson, J. K. Magnuson, and R. P. Lucht, “Diode-laser-based sensor for ultraviolet absorption measurements of atomic mercury,” Appl. Phys. B87(2), 341–353 (2007). [CrossRef]
  13. R. Wallenstein and T. W. Hänsch, “Powerful dye laser oscillator-amplifier system for high resolution spectroscopy,” Opt. Commun.14(3), 353–357 (1975). [CrossRef]
  14. M. Aldén, H. Edner, and S. Svanberg, “Remote measurement of atmospheric mercury using differential absorption lidar,” Opt. Lett.7(5), 221–223 (1982). [CrossRef] [PubMed]
  15. M. Sjöholm, P. Weibring, H. Edner, and S. Svanberg, “Atomic mercury flux monitoring using an optical parametric oscillator based lidar system,” Opt. Express12(4), 551–556 (2004). [CrossRef] [PubMed]
  16. J. Paul, Y. Kaneda, T. L. Wang, C. Lytle, J. V. Moloney, and R. J. Jones, “Doppler-free spectroscopy of mercury at 253.7 nm using a high-power, frequency-quadrupled, optically pumped external-cavity semiconductor laser,” Opt. Lett.36(1), 61–63 (2011). [CrossRef] [PubMed]
  17. M. Scheid, F. Markert, J. Walz, J. Y. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32(8), 955–957 (2007). [CrossRef] [PubMed]
  18. G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, “Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers,” Appl. Phys. Lett.86(18), 184102 (2005). [CrossRef]
  19. X. T. Lou, G. Somesfalean, and Z. G. Zhang, “Gas detection by correlation spectroscopy employing a multimode diode laser,” Appl. Opt.47(13), 2392–2398 (2008). [CrossRef] [PubMed]
  20. X. T. Lou, G. Somesfalean, B. Chen, Y. G. Zhang, H. S. Wang, Z. G. Zhang, S. H. Wu, and Y. K. Qin, “Simultaneous detection of multiple-gas species by correlation spectroscopy using a multimode diode laser,” Opt. Lett.35(11), 1749–1751 (2010). [CrossRef] [PubMed]
  21. M. L. Huber, A. Laesecke, and D. G. Friend, “Correlation for the vapor pressure of mercury,” Ind. Eng. Chem. Res.45(21), 7351–7361 (2006). [CrossRef]
  22. P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B102(2), 313–329 (2011). [CrossRef]
  23. Y. Nishimura and T. Fujimoto, “λ=2537 Ǻ line from a low-pressure mercury discharge lamp emission profile and line absorption by a gas containing a mercury-vapor,” Appl. Phys. B38(2), 91–98 (1985). [CrossRef]
  24. A. C. Vandaele, C. Hermans, and S. Fally, “Fourier transform measurements of SO(2) absorption cross sections: II. Temperature dependence in the 29 000-44 000 cm(−1) (227-345 nm) region,” J. Quant. Spectrosc. Radiat. Transf.110(18), 2115–2126 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited