OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 4957–4967

PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking

Ignacio Izeddin, Mohamed El Beheiry, Jordi Andilla, Daniel Ciepielewski, Xavier Darzacq, and Maxime Dahan  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 4957-4967 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2147 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel approach for three-dimensional localization of single molecules using adaptive optics. A 52-actuator deformable mirror is used to both correct aberrations and induce two-dimensional astigmatism in the point-spread-function. The dependence of the z-localization precision on the degree of astigmatism is discussed. We achieve a z-localization precision of 40 nm for fluorescent proteins and 20 nm for fluorescent dyes, over an axial depth of ~800 nm. We illustrate the capabilities of our approach for three-dimensional high-resolution microscopy with super-resolution images of actin filaments in fixed cells and single-molecule tracking of quantum-dot labeled transmembrane proteins in live HeLa cells.

© 2012 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(180.6900) Microscopy : Three-dimensional microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:

Original Manuscript: December 22, 2011
Revised Manuscript: February 6, 2012
Manuscript Accepted: February 8, 2012
Published: February 13, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Ignacio Izeddin, Mohamed El Beheiry, Jordi Andilla, Daniel Ciepielewski, Xavier Darzacq, and Maxime Dahan, "PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking," Opt. Express 20, 4957-4967 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Lord, H.-L. D. Lee, and W. E. Moerner, “Single-molecule spectroscopy and imaging of biomolecules in living cells,” Anal. Chem.82(6), 2192–2203 (2010). [CrossRef] [PubMed]
  2. M. Born, E. Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman, and W. L. Wilcock, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light, 7th ed. (Cambridge University Press, 1999), p. 986.
  3. F. V. Subach, G. H. Patterson, S. Manley, J. M. Gillette, J. Lippincott-Schwartz, and V. V. Verkhusha, “Photoactivatable mCherry for high-resolution two-color fluorescence microscopy,” Nat. Methods6(2), 153–159 (2009). [CrossRef] [PubMed]
  4. S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc.6(7), 991–1009 (2011). [CrossRef] [PubMed]
  5. M. K. Cheezum, W. F. Walker, and W. H. Guilford, “Quantitative comparison of algorithms for tracking single fluorescent particles,” Biophys. J.81(4), 2378–2388 (2001). [CrossRef] [PubMed]
  6. R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010). [CrossRef] [PubMed]
  7. S. Wolter, M. Schüttpelz, M. Tscherepanow, S. VAN DE Linde, M. Heilemann, and M. Sauer, “Real-time computation of subdiffraction-resolution fluorescence images,” J. Microsc.237(1), 12–22 (2010). [CrossRef] [PubMed]
  8. P. N. Hedde, J. Fuchs, F. Oswald, J. Wiedenmann, and G. U. Nienhaus, “Online image analysis software for photoactivation localization microscopy,” Nat. Methods6(10), 689–690 (2009). [CrossRef] [PubMed]
  9. I. Izeddin, J. Boulanger, V. Racine, C. Specht, A. Kechkar, D. Nair, A. Triller, D. Choquet, M. Dahan, and J. Sibarita, “Wavelet analysis for single molecule localization microscopy,” Opt. Express20(3), 2081–2095 (2012). [CrossRef]
  10. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  11. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  12. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  13. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  14. G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem.61(1), 345–367 (2010). [CrossRef] [PubMed]
  15. H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994). [CrossRef] [PubMed]
  16. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813 (2008). [CrossRef] [PubMed]
  17. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008). [CrossRef] [PubMed]
  18. S. Ram, P. Prabhat, J. Chao, E. S. Ward, and R. J. Ober, “High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells,” Biophys. J.95(12), 6025–6043 (2008). [CrossRef] [PubMed]
  19. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.106(9), 2995–2999 (2009). [CrossRef] [PubMed]
  20. G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. Lippincott-Schwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, “Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure,” Proc. Natl. Acad. Sci. U.S.A.106(9), 3125–3130 (2009). [CrossRef] [PubMed]
  21. J. Beckers, “Adaptive optics for astronomy: Principles, performance, and applications,” Annu. Rev. Astron. Astr. (1993).
  22. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7, 141–147 (2010). [PubMed]
  23. M. J. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive‐index‐mismatched media,” J. Microsc.192(2), 90–98 (1998). [CrossRef]
  24. M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000). [CrossRef] [PubMed]
  25. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express18(16), 17521–17532 (2010). [CrossRef] [PubMed]
  26. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett.36(7), 1062–1064 (2011). [CrossRef] [PubMed]
  27. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, and P. Loza-Alvarez, “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express2(11), 3135–3149 (2011). [CrossRef] [PubMed]
  28. Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc.226(1), 33–42 (2007). [CrossRef] [PubMed]
  29. P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc.237(2), 136–147 (2010). [CrossRef] [PubMed]
  30. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett.36(6), 825–827 (2011). [CrossRef] [PubMed]
  31. S. Forrest, “Genetic algorithms: principles of natural selection applied to computation,” Science261(5123), 872–878 (1993). [CrossRef] [PubMed]
  32. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett.32(1), 5–7 (2007). [CrossRef] [PubMed]
  33. A. Sergé, N. Bertaux, H. Rigneault, and D. Marguet, “Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes,” Nat. Methods5(8), 687–694 (2008). [CrossRef] [PubMed]
  34. I. Izeddin, C. G. Specht, M. Lelek, X. Darzacq, A. Triller, C. Zimmer, and M. Dahan, “Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe,” PLoS ONE6(1), e15611 (2011). [CrossRef] [PubMed]
  35. M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau, and A. Triller, “Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking,” Science302(5644), 442–445 (2003). [CrossRef] [PubMed]
  36. F. Pinaud, S. Clarke, A. Sittner, and M. Dahan, “Probing cellular events, one quantum dot at a time,” Nat. Methods7(4), 275–285 (2010). [CrossRef] [PubMed]
  37. H. Bannai, S. Lévi, C. Schweizer, M. Dahan, and A. Triller, “Imaging the lateral diffusion of membrane molecules with quantum dots,” Nat. Protoc.1(6), 2628–2634 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 5 Fig. 2
Fig. 3 Fig. 4

Supplementary Material

» Media 1: MOV (191 KB)     
» Media 2: AVI (7854 KB)     
» Media 3: AVI (4869 KB)     
» Media 4: AVI (11424 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited