OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5003–5010

Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering

Joseph D. Miller, Chloe E. Dedic, Sukesh Roy, James R. Gord, and Terrence R. Meyer  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5003-5010 (2012)
http://dx.doi.org/10.1364/OE.20.005003


View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Rotational-level-dependent dephasing rates and nonresonant background can lead to significant uncertainties in coherent anti-Stokes Raman scattering (CARS) thermometry under high-pressure, low-temperature conditions if the gas composition is unknown. Hybrid femtosecond/picosecond rotational CARS is employed to minimize or eliminate the influence of collisions and nonresonant background for accurate, frequency-domain thermometry at elevated pressure. The ability to ignore these interferences and achieve thermometric errors of <5% is demonstrated for N2 and O2 at pressures up to 15 atm. Beyond 15 atm, the effects of collisions cannot be ignored but can be minimized using a short probe delay (~6.5 ps) after Raman excitation, thereby improving thermometric accuracy with a time- and frequency-resolved theoretical model.

© 2012 OSA

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
Sensors

History
Original Manuscript: November 7, 2011
Revised Manuscript: December 20, 2011
Manuscript Accepted: December 23, 2011
Published: February 13, 2012

Citation
Joseph D. Miller, Chloe E. Dedic, Sukesh Roy, James R. Gord, and Terrence R. Meyer, "Interference-free gas-phase thermometry at elevated pressure using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering," Opt. Express 20, 5003-5010 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5003


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows,” Prog. Energ. Combust. Sci.36(2), 280–306 (2010). [CrossRef]
  2. T. Seeger, F. Beyrau, A. Brauer, and A. Leipertz, “High-pressure pure rotational CARS: comparison of temperature measurements with O2, N2 and synthetic air,” J. Raman Spectrosc.34, 932–939 (2003). [CrossRef]
  3. F. Vestin, M. Afzelius, and P. E. Bengtsson, “Development of rotational CARS for combustion diagnostics using a polarization approach,” Proc. Combust. Inst.31(1), 833–840 (2007). [CrossRef]
  4. F. M. Kamga and M. G. Sceats, “Pulse-sequenced coherent anti-Stokes Raman scattering: Method for suppression of the non-resonant background,” Opt. Lett.5(3), 126–128 (1980). [CrossRef] [PubMed]
  5. H. M. Frey, P. Beaud, T. Gerber, B. Mischler, P. Radi, and A. P. Tzannis, “Femtosecond nonresonant degenerate four-wave mixing at atmospheric pressure and in a free jet,” Appl. Phys. B68(4), 735–739 (1999). [CrossRef]
  6. P. Beaud, H. M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett.344(3-4), 407–412 (2001). [CrossRef]
  7. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc.61(11), 1135–1140 (2007). [CrossRef] [PubMed]
  8. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N(2) thermometry,” Opt. Lett.34(23), 3755–3757 (2009). [CrossRef] [PubMed]
  9. G. Knopp, P. Beaud, P. Radi, M. Tulej, B. Bougie, D. Cannavo, and T. Gerber, “Pressure-dependent N2 Q-branch fs-CARS measurements,” J. Raman Spectrosc.33(11-12), 861–865 (2002). [CrossRef]
  10. T. Lang and M. Motzkus, “Determination of line shift coefficients with femtosecond time resolved CARS,” J. Raman Spectrosc.31(1-2), 65–70 (2000). [CrossRef]
  11. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys.115(12), 5418–5426 (2001). [CrossRef]
  12. P. Beaud and G. Knopp, “Scaling rotationally inelastic collisions with an effective angular momentum parameter,” Chem. Phys. Lett.371(1-2), 194–201 (2003). [CrossRef]
  13. P. Beaud, T. Gerber, P. Radi, M. Tulej, and G. Knopp, “Rotationally inelastic collisions between N2 and rare gases: An extension of the angular momentum scaling law,” Chem. Phys. Lett.373(3-4), 251–257 (2003). [CrossRef]
  14. G. Knopp, P. Radi, M. Tulej, T. Gerber, and P. Beaud, “Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering,” J. Chem. Phys.118(18), 8223–8233 (2003). [CrossRef]
  15. T. Lang and M. Motzkus, “Single-shot femtosecond coherent anti-Stokes Raman scattering thermometry,” J. Opt. Soc. Am. B19(2), 340–344 (2002). [CrossRef]
  16. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett.89(25), 251112 (2006). [CrossRef]
  17. J. D. Miller, S. Roy, M. N. Slipchenko, J. R. Gord, and T. R. Meyer, “Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering,” Opt. Express19(16), 15627–15640 (2011). [CrossRef] [PubMed]
  18. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010). [CrossRef] [PubMed]
  19. J. D. Miller, M. N. Slipchenko, and T. R. Meyer, “Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature,” Opt. Express19(14), 13326–13333 (2011). [CrossRef] [PubMed]
  20. J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond∕picosecond coherent anti-Stokes Raman scattering,” J. Chem. Phys.135(20), 201104 (2011). [CrossRef] [PubMed]
  21. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys.125(4), 044502 (2006). [CrossRef] [PubMed]
  22. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high-temperature with inverse Raman-spectroscopy,” J. Opt. Soc. Am. B3(9), 1164–1169 (1986). [CrossRef]
  23. B. Lavorel, H. Tran, E. Hertz, O. Faucher, P. Joubert, M. Motzkus, T. Buckup, T. Lang, H. Skenderovi, G. Knopp, P. Beaud, and H. M. Frey, “Femtosecond Raman time-resolved molecular spectroscopy,” C. R. Phys.5, 215–229 (2004). [CrossRef]
  24. L. Martinsson, P. E. Bengtsson, M. Alden, S. Kroll, and J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys.99(4), 2466–2477 (1993). [CrossRef]
  25. M. Afzelius, P. E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, and T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa II. Rotaitonal Raman linewidths,” Appl. Phys. B75(6-7), 771–778 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited