OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5017–5028

Proposal for a superconducting photon number resolving detector with large dynamic range

Saeedeh Jahanmirinejad and Andrea Fiore  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5017-5028 (2012)
http://dx.doi.org/10.1364/OE.20.005017


View Full Text Article

Enhanced HTML    Acrobat PDF (1845 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel photon number resolving detector structure with large dynamic range. It consists of the series connection of N superconducting nanowires, each connected in parallel to an integrated resistor. Photon absorption in a wire switches its current to the parallel resistor producing a voltage pulse and the sum of these voltages is measured at the output. The combination of this structure and a high input impedance preamplifier result in linear, high fidelity, and fast photon detection in the range from one to several tens of photons.

© 2012 OSA

OCIS Codes
(040.3780) Detectors : Low light level
(040.5160) Detectors : Photodetectors

ToC Category:
Detectors

History
Original Manuscript: November 9, 2011
Revised Manuscript: January 16, 2012
Manuscript Accepted: February 7, 2012
Published: February 14, 2012

Citation
Saeedeh Jahanmirinejad and Andrea Fiore, "Proposal for a superconducting photon number resolving detector with large dynamic range," Opt. Express 20, 5017-5028 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5017


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001). [CrossRef] [PubMed]
  2. P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007). [CrossRef]
  3. N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A76(5), 050301 (2007). [CrossRef]
  4. M. Fujiwara and M. Sasaki, “Direct measurement of photon number statistics at telecom wavelengths using a charge integration photon detector,” Appl. Opt.46(16), 3069–3074 (2007). [CrossRef] [PubMed]
  5. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16(5), 3032–3040 (2008). [CrossRef] [PubMed]
  6. B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics2(7), 425–428 (2008). [CrossRef]
  7. J. Kitaygorsky, S. Dorenbos, E. Reiger, R. Schouten, V. Zwiller, and R. Sobolewski, “HEMT-based readout technique for dark- and photon-count studies in NbN superconducting single-photon detectors,” IEEE Trans. Appl. Supercond.19(3), 346 (2009). [CrossRef]
  8. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A68(4), 043814 (2003). [CrossRef]
  9. P. Eraerds, E. Pomarico, J. Zhang, B. Sanguinetti, R. Thew, and H. Zbinden, “32 bin near-infrared time-multiplexing detector with attojoule single-shot energy resolution,” Rev. Sci. Instrum.81(10), 103105 (2010). [CrossRef] [PubMed]
  10. L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A75(6), 062325 (2007). [CrossRef]
  11. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt.56(2-3), 364–373 (2009). [CrossRef]
  12. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics2(5), 302–306 (2008). [CrossRef]
  13. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys.11(4), 045022 (2009). [CrossRef]
  14. G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705 (2001). [CrossRef]
  15. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, and K. K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express14(2), 527–534 (2006). [CrossRef] [PubMed]
  16. B. Baek, J. A. Stern, and S. W. Nam, “Superconducting nanowire single-photon detector in an optical cavity for front-side illumination,” Appl. Phys. Lett.95(19), 191110 (2009). [CrossRef]
  17. A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett.97(15), 151108 (2010). [CrossRef]
  18. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett.96(22), 221109 (2010). [CrossRef]
  19. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011). [CrossRef]
  20. E. A. Dauler, A. J. Kerman, D. Rosenberg, S. Pan, M. E. Grein, R. J. Molnar, R. E. Correa, M. G. Bawendi, K. K. Berggren, J. D. Moores, and D. M. Boroson, “Superconducting nanowire single photon detectors,” in Proceedings of 24th Annual Meeting of IEEE Photonics Society, 2011, pp.350–351.
  21. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High speed travelling wave single-photon detectors with near-unity quantum efficiency,” arXiv:1108.5299, (2011).
  22. J. K. W. Yang, A. J. Kerman, E. A. Dauler, V. Anant, K. M. Rosfjord, and K. K. Berggren, “Modeling the electrical and thermal response of superconducting nanowire single-photon detectors,” IEEE Trans. Appl. Supercond.17(2), 581 (2007). [CrossRef]
  23. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79(10), 100509 (2009). [CrossRef]
  24. J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, “Tomography of quantum detectors,” Nat. Phys.5(1), 27–30 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited