OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5044–5051

Crosstalk calibration of multi-pixel photon counters using coherent states

Dmitry A. Kalashnikov, Si-Hui Tan, and Leonid A. Krivitsky  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5044-5051 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (925 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel method of calibration of crosstalk probability for multi-pixel photon counters (MPPCs) based on the measurement of the normalized second-order intensity correlation function of coherent light. The method was tested for several MPPCs, and was shown to be advantageous over the traditional calibration method based on the measurements of the dark noise statistics. The method can be applied without the need of modification for different kinds of spatially resolved single photon detectors.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.5570) Quantum optics : Quantum detectors
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Quantum Optics

Original Manuscript: January 11, 2012
Revised Manuscript: February 1, 2012
Manuscript Accepted: February 5, 2012
Published: February 14, 2012

Dmitry A. Kalashnikov, Si-Hui Tan, and Leonid A. Krivitsky, "Crosstalk calibration of multi-pixel photon counters using coherent states," Opt. Express 20, 5044-5051 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409(6816), 46–52 (2001). [CrossRef] [PubMed]
  2. P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79(1), 135–174 (2007). [CrossRef]
  3. J. L. O’Brien, “Optical quantum computing,” Science318(5856), 1567–1570 (2007). [CrossRef] [PubMed]
  4. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors” Bell experiment via entanglement swapping,” Phys. Rev. Lett.71(26), 4287–4290 (1993). [CrossRef] [PubMed]
  5. L. Pezzé and A. Smerzi, “Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light,” Phys. Rev. Lett.100(7), 073601 (2008). [CrossRef] [PubMed]
  6. S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum.52(3), 408–412 (1981). [CrossRef]
  7. D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber assisted detection with photon-number resolution,” Opt. Lett.28(23), 2387–2389 (2003). [CrossRef] [PubMed]
  8. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon number resolution using a time-multiplexed single-photon detector,” Phys. Rev. A68(4), 043814 (2003). [CrossRef]
  9. M. Mičuda, O. Haderka, and M. Ježek, “High-efficiency photon-number-resolving multichannel detector,” Phys. Rev. A78(2), 025804 (2008). [CrossRef]
  10. M. Bondani, A. Allevi, A. Agliati, and A. Andreoni, “Self-consistent characterization of light statistics,” J. Mod. Opt.56(2-3), 226–231 (2009). [CrossRef]
  11. J. Kim, S. Takeuchi, Y. Yamamoto, and H. H. Hogue, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett.74(7), 902–904 (1999). [CrossRef]
  12. S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high quantum-efficiency single-photon counting system,” Appl. Phys. Lett.74(8), 1063–1065 (1999). [CrossRef]
  13. E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron.9(6), 1502–1511 (2003). [CrossRef]
  14. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Rev.73, 735–737 (1998).
  15. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A71(6), 061803 (2005). [CrossRef]
  16. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16(5), 3032–3040 (2008). [CrossRef] [PubMed]
  17. Hamamatsu web-page http://jp.hamamatsu.com/products/sensor-ssd/4010/index_en.html
  18. I. Afek, A. Natan, O. Ambar, and Y. Silberberg, “Quantum state measurements using multipixel photon detectors,” Phys. Rev. A79(4), 043830 (2009). [CrossRef]
  19. M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B27(5), 852–862 (2010). [CrossRef]
  20. D. A. Kalashnikov, S.-H. Tan, M. V. Chekhova, and L. A. Krivitsky, “Accessing photon bunching with a photon number resolving multi-pixel detector,” Opt. Express19(10), 9352–9363 (2011). [CrossRef] [PubMed]
  21. L. Dovrat, M. Bakstein, D. Istrati, A. Shaham, and H. S. Eisenberg, “Measurements of the dependence of the photon-number distribution on the number of modes in parametric down-conversion,” Opt. Express20(3), 2266–2276 (2012). [CrossRef]
  22. A. Vacheret, G. J. Barker, M. Dziewiecki, P. Guzowski, M. D. Haigh, B. Hartfiel, A. Izmaylov, W. Johnston, M. Khabibullin, A. Khotjantsev, Yu. Kudenko, R. Kurjata, T. Kutter, T. Lindner, P. Masliah, J. Marzec, O. Mineev, Yu. Musienko, S. Oser, F. Retiere, R. O. Salih, A. Shaikhiev, L. F. Thompson, M. A. Ward, R. J. Wilson, N. Yershov, K. Zaremba, and M. Ziembicki, “Characterization and simulation of the response of multi pixel photon counters to low light levels,” ArXiv: 1101.1996v1 (2011)
  23. M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, “Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature,” Opt. Express17(19), 16885–16897 (2009). [CrossRef] [PubMed]
  24. A. Spinelli and A. L. Lacaita, “Physics and numerical simulation of single photon avalanche diodes,” IEEE Trans. Electron. Dev.44(11), 1931–1943 (1997). [CrossRef]
  25. I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “A new approach to optical crosstalk modeling in single-photon avalanche diodes,” IEEE Photon. Technol. Lett.20(5), 330–332 (2008). [CrossRef]
  26. R. D. Younger, K. A. McIntosh, J. W. Chludzinski, D. C. Oakley, L. J. Mahoney, J. E. Funk, J. P. Donnelly, and S. Verghese, “Crosstalk analsis of integrated Geiger-mode avalanche photodiode focal plane array,” Proc. SPIE7320, 73200Q, 73200Q-12 (2009). [CrossRef]
  27. E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk characterization in Geiger-mode avalanche photodiode arrays,” IEEE Electron Device Lett.29(3), 218–220 (2008). [CrossRef]
  28. M. Yokoyama, A. Minamino, S. Gomi, K. Ieki, N. Nagai, T. Nakaya, K. Nitta, D. Orme, M. Otani, T. Murakami, T. Nakadaira, and M. Tanaka, “Performance of multi-pixel photon counters for the T2K near detectors,” ArXiv:1007.2712v1 (2010).
  29. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express15(22), 14539–14549 (2007). [CrossRef] [PubMed]
  30. M. Avenhaus, K. Laiho, M. V. Chekhova, and C. Silberhorn, “Accessing higher order correlations in quantum optical states by time multiplexing,” Phys. Rev. Lett.104(6), 063602 (2010). [CrossRef] [PubMed]
  31. A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices,” IEEE Trans. Electron. Dev.40(3), 577–582 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited