OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5061–5068

Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells

Rui Xu, Xiaodong Wang, Liang Song, Wen Liu, An Ji, Fuhua Yang, and Jinmin Li  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5061-5068 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1236 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, silicon solar cells with Ag nanoparticles deposited on a SiO2 spacer were studied concentrating on the influence of the surface plasmon and the antireflection film. We experimentally found that the photocurrent conversion efficiency of the solar cell decorated by random arrays of self-assembled Ag nanoparticles increases firstly and decreases afterwards with increasing spacer thickness. Further investigations on the external quantum efficiency (EQE) illustrated this trend more clearly. It was also found that the effect of the surface plasmon on light absorption dominates over that of the antireflection film at the resonance wavelength which is an important factor determining the light trapping. Moreover, surface plasmon is determined by both the Si substrate and the SiO2 spacer. For self-assembled Ag particles on the surface of the solar cells in our experiments, appropriate spacer thickness (9-35 nm) could broaden the plasmon resonance, narrow the photocurrent suppression range, weaken the suppression amplitude and strengthen the gain at the resonance wavelength, while still providing antireflection effect.

© 2012 OSA

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Solar Energy

Original Manuscript: November 10, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 9, 2012
Published: February 15, 2012

Rui Xu, Xiaodong Wang, Liang Song, Wen Liu, An Ji, Fuhua Yang, and Jinmin Li, "Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells," Opt. Express 20, 5061-5068 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95(6), 1527–1536 (2011). [CrossRef]
  2. T. H. Chang, P. H. Wu, S. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen, and Y. K. Su, “Efficiency enhancement in GaAs solar cells using self-assembled microspheres,” Opt. Express 17(8), 6519–6524 (2009). [CrossRef] [PubMed]
  3. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17(25), 23058–23065 (2009). [CrossRef] [PubMed]
  4. J. Schaffner, M. Motzko, A. Tueschen, A. Swirschuk, H. J. Schimper, A. Klein, T. Modes, O. Zywitzki, and W. Jaegermann, “12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation,” J. Appl. Phys. 110(6), 064508 (2011). [CrossRef]
  5. W. Liu, X. D. Wang, Y. Q. Li, Z. X. Geng, F. H. Yang, and J. M. Li, “Surface plasmon enhanced GaAs thin film solar cells,” Sol. Energy Mater. Sol. Cells 95(2), 693–698 (2011). [CrossRef]
  6. M. Lira-Cantu, A. Chafiq, J. Faissat, I. Gonzalez-Valls, and Y. Yu, “Oxide/polymer interfaces for hybrid and organic solar cells: Anatase vs. Rutile TiO2,” Sol. Energy Mater. Sol. Cells 95(5), 1362–1374 (2011). [CrossRef]
  7. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005). [CrossRef] [PubMed]
  8. Y. A. Chang, H. C. Kuo, T. C. Lu, F. Lai, S. Y. Kuo, L. W. Laih, L. H. Laih, and S. C. Wang, “Efficiency improvement of single-junction In0.5Ga0.5P solar cell with compositional grading p-emitter/window capping configuration,” Jpn. J. Appl. Phys. 49(12), 122301 (2010). [CrossRef]
  9. U. Guler and R. Turan, “Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles,” Opt. Express 18(16), 17322–17338 (2010). [CrossRef] [PubMed]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  11. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. 107(3), 668–677 (2003). [CrossRef]
  12. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010). [CrossRef]
  13. R. Xu, X. D. Wang, W. Liu, X. N. Xu, Y. Q. Li, A. Ji, and F. H. Yang, “Dielectric layer dependent surface plasmon effect of metallic nanoparticles on silicon substrate,” Chin. Phys. B (submitted).
  14. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007). [CrossRef]
  15. http://rsb.info.nih.gov/ij/ .
  16. http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  17. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys. 109(7), 073105 (2011). [CrossRef]
  18. N. D. Arora, S. G. Chamberlain, and D. J. Roulston, “Diffusion length determination in p-n junction diodes and solar cells,” Appl. Phys. Lett. 37(3), 325 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited