OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5069–5081

Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout

Adam B. Taylor, Jooho Kim, and James W. M. Chon  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5069-5081 (2012)
http://dx.doi.org/10.1364/OE.20.005069


View Full Text Article

Acrobat PDF (4350 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.

© 2012 OSA

OCIS Codes
(210.4810) Optical data storage : Optical storage-recording materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 21, 2011
Revised Manuscript: February 12, 2012
Manuscript Accepted: February 13, 2012
Published: February 15, 2012

Citation
Adam B. Taylor, Jooho Kim, and James W. M. Chon, "Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout," Opt. Express 20, 5069-5081 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5069


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir 15(3), 701–709 (1999). [CrossRef]
  2. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000). [CrossRef]
  3. H. Ditlbacher, B. Lamprecht, A. Leitner, F. R. Aussenegg, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25(8), 563–565 (2000). [CrossRef] [PubMed]
  4. M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, and A. Takami, “Optical recording media using laser-induced size reduction of Au nanoparticles,” Appl. Phys. Lett. 79(10), 1528–1530 (2001). [CrossRef]
  5. O. Wilson, G. J. Wilson, and P. Mulvaney, “Laser writing in polarized silver nanorod films,” Adv. Mater. (Deerfield Beach Fla.) 14, 1000–1004 (2002).
  6. Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation,” Jpn. J. Appl. Phys. 42(Part 1, No. 4A), 1749–1750 (2003). [CrossRef]
  7. J. Pérez-Juste, B. Rodrıguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005). [CrossRef]
  8. H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys. 8(7), 814–821 (2006). [CrossRef] [PubMed]
  9. G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, “Coherent excitation of vibrational modes in gold nanorods,” J. Phys. Chem. B 106(4), 743–747 (2002). [CrossRef]
  10. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005). [CrossRef]
  11. A. Stalmashonak, G. Seifert, and H. Graener, “Spectral range extension of laser-induced dichroism in composite glass with silver nanoparticles,” J. Opt. A, Pure Appl. Opt. 11(6), 065001 (2009). [CrossRef]
  12. A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009). [CrossRef] [PubMed]
  13. J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectrum encoding on gold nanorods doped in silica sol-gel matrix and its application to high density optical data storage,” Adv. Funct. Mater. 17(6), 875–880 (2007). [CrossRef]
  14. P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express 15(19), 12151–12160 (2007). [CrossRef] [PubMed]
  15. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  16. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S. H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17(16), 14001–14014 (2009). [CrossRef] [PubMed]
  17. W. T. Chen, P. C. Wu, C. J. Chen, C.-J. Weng, H.-C. Lee, T.-J. Yen, C.-H. Kuan, M. Mansuripur, and D. P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Appl. Phys. Lett. 98(17), 171106 (2011). [CrossRef]
  18. D. Wan, H. L. Chen, S. C. Tseng, L. A. Wang, and Y. P. Chen, “One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates,” ACS Nano 4(1), 165–173 (2010). [CrossRef] [PubMed]
  19. I. Ichimura, K. Saito, T. Yamasaki, and K. Osato, “Proposal for a multilayer read-only-memory optical disk structure,” Appl. Opt. 45(8), 1794–1803 (2006). [CrossRef] [PubMed]
  20. A. Mitsumori, T. Higuchi, T. Yanagisawa, M. Ogasawara, S. Tanaka, and T. Iida, “Multilayer 500 gigabyte optical disk,” Jpn. J. Appl. Phys. 48(3), 03A055 (2009). [CrossRef]
  21. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998). [CrossRef]
  22. S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001). [CrossRef]
  23. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005). [CrossRef] [PubMed]
  24. R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Annalen der Physik 342(5), 881–900 (1912). [CrossRef]
  25. C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, and G. V. Hartland, “Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study,” Phys. Chem. Chem. Phys. 8(30), 3540–3546 (2006). [CrossRef] [PubMed]
  26. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006). [CrossRef]
  27. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods using seedmediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003). [CrossRef]
  28. K. Choi, P. Zijlstra, J. W. M. Chon, and M. Gu, “Fabrication of low-threshold 3D, void structures inside a polymer matrix doped with gold nanorods,” Adv. Funct. Mater. 18(15), 2237–2245 (2008). [CrossRef]
  29. J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett. 9(10), 3612–3618 (2009). [CrossRef] [PubMed]
  30. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007). [CrossRef] [PubMed]
  31. K. Seal, D. A. Genov, A. K. Sarychev, H. Noh, V. M. Shalaev, Z. C. Ying, X. Zhang, and H. Cao, “Coexistence of localized and delocalized surface plasmon modes in percolating metal films,” Phys. Rev. Lett. 97(20), 206103 (2006). [CrossRef] [PubMed]
  32. K. J. Chau, G. D. Dice, and A. Y. Elezzabi, “Coherent plasmonic enhanced terahertz transmission through random metallic media,” Phys. Rev. Lett. 94(17), 173904 (2005). [CrossRef] [PubMed]
  33. S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” J. Appl. Phys. 100(4), 044324 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited