OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5119–5126

Low-frequency Raman scattering of bioinspired self-assembled diphenylalanine nanotubes/microtubes

Xinglong Wu, Shijie Xiong, Minjie Wang, Jiancang Shen, and Paul K. Chu  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5119-5126 (2012)
http://dx.doi.org/10.1364/OE.20.005119


View Full Text Article

Enhanced HTML    Acrobat PDF (1537 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Low-frequency Raman scattering from self-assembled bioinspired diphenylalanine (FF) nanotubes/microtubes (NTs/MTs) has been observed for the first time. Four double peaks are identified as the three-dimensional localized collective (acoustic phonon) vibrations of FF molecules in the subnanometer crystalline structure (biological building block) forming the FF NTs/MTs. The increased energy separations between two subpeaks caused by the loss of water in the nanochannel cores are due to the enhancement of vibrational couplings between the FF molecules as a result of the reduction of the influence from water on the coupling. The results provide experimental evidence of localized but still weakly coupled vibrations in organic crystalline nanostructures in the low-frequency region.

© 2012 OSA

OCIS Codes
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(300.6450) Spectroscopy : Spectroscopy, Raman
(160.1435) Materials : Biomaterials

ToC Category:
Materials

History
Original Manuscript: November 14, 2011
Revised Manuscript: December 29, 2011
Manuscript Accepted: January 12, 2012
Published: February 16, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Xinglong Wu, Shijie Xiong, Minjie Wang, Jiancang Shen, and Paul K. Chu, "Low-frequency Raman scattering of bioinspired self-assembled diphenylalanine nanotubes/microtubes," Opt. Express 20, 5119-5126 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5119


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Duval, A. Boukenter, and B. Champagnon, “Vibration eigenmodes and size of microcrystallites in glass-Observation by very-low-frequency Raman-scattering,” Phys. Rev. Lett.56(19), 2052–2055 (1986). [CrossRef]
  2. L. Saviot and D. B. Murray, “Long lived acoustic vibrational modes of an embedded nanoparticle,” Phys. Rev. Lett.93(5), 055506 (2004). [CrossRef] [PubMed]
  3. A. Courty, A. Mermet, P. A. Albouy, E. Duval, and M. P. Pileni, “Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals,” Nat. Mater.4(5), 395–398 (2005). [CrossRef] [PubMed]
  4. H. K. Yadav, V. Gupta, K. Sreenivas, S. P. Singh, B. Sundarakannan, and R. S. Katiyar, “Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles,” Phys. Rev. Lett.97(8), 085502 (2006). [CrossRef] [PubMed]
  5. X. L. Wu, S. J. Xiong, Y. M. Yang, J. F. Gong, H. T. Chen, J. Zhu, J. C. Shen, and P. K. Chu, “Nanocrystal-induced line narrowing of surface acoustic phonons in the Raman spectra of embedded GexSi1-x alloy nanocrystals,” Phys. Rev. B78(16), 165319 (2008). [CrossRef]
  6. X. L. Wu, S. J. Xiong, L. T. Sun, J. C. Shen, and P. K. Chu, “Low-frequency Raman scattering from nanocrystals caused by coherent excitation of phonons,” Small5(24), 2823–2826 (2009) (and references therein). [CrossRef] [PubMed]
  7. M. Reches and E. Gazit, “Casting metal nanowires within discrete self-assembled peptide nanotubes,” Science300(5619), 625–627 (2003). [CrossRef] [PubMed]
  8. M. Reches and E. Gazit, “Controlled patterning of aligned self-assembled peptide nanotubes,” Nat. Nanotechnol.1(3), 195–200 (2006). [CrossRef] [PubMed]
  9. M. Reches and E. Gazit, “Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides,” Nano Lett.4(4), 581–585 (2004). [CrossRef]
  10. N. Kol, L. Adler-Abramovich, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, “Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures,” Nano Lett.5(7), 1343–1346 (2005). [CrossRef] [PubMed]
  11. L. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, and E. Gazit, “Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications,” Langmuir22(3), 1313–1320 (2006). [CrossRef] [PubMed]
  12. A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano4(2), 610–614 (2010). [CrossRef] [PubMed]
  13. K. Biswas and C. N. R. Rao, “Nanostructured peptide fibrils formed at the organic-aqueous interface and their use as templates to prepare inorganic nanostructures,” ACS Appl. Mater. Interfaces1(4), 811–815 (2009). [CrossRef] [PubMed]
  14. N. Amdursky, M. Molotskii, D. Aronov, L. Adler-Abramovich, E. Gazit, and G. Rosenman, “Blue luminescence based on quantum confinement at peptide nanotubes,” Nano Lett.9(9), 3111–3115 (2009). [CrossRef] [PubMed]
  15. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: Optical properties,” Appl. Phys. Lett.94(26), 261907 (2009). [CrossRef]
  16. N. Amdursky, E. Gazit, and G. Rosenman, “Quantum confinement in self-assembled bioinspired peptide hydrogels,” Adv. Mater. (Deerfield Beach Fla.)22(21), 2311–2315 (2010). [CrossRef] [PubMed]
  17. J. K. Ryu, S. Y. Lim, and C. B. Park, “Photoluminescent peptide nanotubes,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1577–1581 (2009). [CrossRef]
  18. C. H. Görbitz, “The structure of nanotubes formed by diphenylalanine, the core recognition motif of Alzheimer’s β-amyloid polypeptide,” Chem. Commun. (Camb.) (22): 2332–2334 (2006). [CrossRef] [PubMed]
  19. C. H. Görbitz, “Nanotube formation by hydrophobic dipeptides,” Chemistry7(23), 5153–5159 (2001). [CrossRef] [PubMed]
  20. J. B. Kim, T. H. Han, Y. I. Kim, J. S. Park, J. Choi, D. G. Churchill, S. O. Kim, and H. Ihee, “Role of water in directing diphenylalanine assembly into nanotubes and nanowires,” Adv. Mater. (Deerfield Beach Fla.)22(5), 583–587 (2010). [CrossRef] [PubMed]
  21. M. J. Wang, S. J. Xiong, X. L. Wu, and P. K. Chu, “Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability,” Small7(19), 2801–2807 (2011). [CrossRef] [PubMed]
  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, Jr., J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, Ö. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komáromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 03, Revision A.1 (Gaussian, Inc., Pittsburgh, PA, 2003).
  23. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996). [CrossRef] [PubMed]
  24. J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a systematic molecular orbital theory for excited states,” J. Phys. Chem.96(1), 135–149 (1992). [CrossRef]
  25. C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comput. Chem.17(1), 49–56 (1996). [CrossRef]
  26. R. Krishnan, H. B. Schlegel, and J. A. Pople, “Derivative studies in configuration-interaction theory,” J. Chem. Phys.72(8), 4654–4655 (1980). [CrossRef]
  27. A. Komornicki and R. L. Jaffe, “Ab initio investigation of the structure, vibrational frequencies, and intensities of HO2 and HOCl,” J. Chem. Phys.71(5), 2150–2155 (1979). [CrossRef]
  28. X. L. Wu, S. J. Xiong, Z. Liu, J. Chen, J. C. Shen, T. H. Li, P. H. Wu, and P. K. Chu, “Green light stimulates terahertz emission from mesocrystal microspheres,” Nat. Nanotechnol.6(2), 103–106 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited