OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5127–5132

Raman concentrators in Ge nanowires with dielectric coatings

Jerome K. Hyun, In Soo Kim, Justin G. Connell, and Lincoln J. Lauhon  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5127-5132 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1717 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Raman spectroscopy is a powerful tool for investigating many fundamental properties of nanostructures, but extrinsic effects including background scattering and laser-induced heating can limit the analysis of intrinsic properties. A thin SiO2 dielectric coating is found to enhance the Raman signal from a single Ge nanowire by a factor of two as a result of wave interference. Consequently, the coated nanowire experiences less heating than a bare nanowire at equivalent signal intensities. The results demonstrate a simple and effective method to extend the limits of Raman analysis on single nanostructures and facilitate their characterization.

© 2012 OSA

OCIS Codes
(300.6450) Spectroscopy : Spectroscopy, Raman
(310.1210) Thin films : Antireflection coatings
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: November 15, 2011
Revised Manuscript: January 10, 2012
Manuscript Accepted: January 18, 2012
Published: February 16, 2012

Jerome K. Hyun, In Soo Kim, Justin G. Connell, and Lincoln J. Lauhon, "Raman concentrators in Ge nanowires with dielectric coatings," Opt. Express 20, 5127-5132 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002). [CrossRef] [PubMed]
  2. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  3. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature449(7164), 885–889 (2007). [CrossRef] [PubMed]
  4. C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol.10(3), 1430–1449 (2010). [CrossRef] [PubMed]
  5. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.)14(2), 158–160 (2002). [CrossRef]
  6. L. Y. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006). [CrossRef] [PubMed]
  7. S. X. Zhang, F. J. Lopez, J. K. Hyun, and L. J. Lauhon, “Direct detection of hole gas in Ge-Si core-shell nanowires by enhanced Raman scattering,” Nano Lett.10(11), 4483–4487 (2010). [CrossRef] [PubMed]
  8. G. Imamura, T. Kawashima, M. Fujii, C. Nishimura, T. Saitoh, and S. Hayashi, “Distribution of active impurities in single silicon nanowires,” Nano Lett.8(9), 2620–2624 (2008). [CrossRef] [PubMed]
  9. T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, “Raman scattering studies of electrically active impurities in in situ B-doped silicon nanowires: Effects of annealing and oxidation,” J. Phys. Chem. C111(42), 15160–15165 (2007). [CrossRef]
  10. N. Fukata, J. Chen, T. Sekiguchi, N. Okada, K. Murakami, T. Tsurui, and S. Ito, “Doping and hydrogen passivation of boron in silicon nanowires synthesized by laser ablation,” Appl. Phys. Lett.89(20), 203109 (2006). [CrossRef]
  11. F. J. Lopez, E. R. Hemesath, and L. J. Lauhon, “Ordered stacking fault arrays in silicon nanowires,” Nano Lett.9(7), 2774–2779 (2009). [CrossRef] [PubMed]
  12. K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined phonons in Si nanowires,” Nano Lett.5(3), 409–414 (2005). [CrossRef] [PubMed]
  13. R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, “Phonon confinement and laser heating effects in germanium nanowires,” Phys. Rev. B74(15), 155421 (2006). [CrossRef]
  14. K. W. Adu, H. R. Gutierrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study,” Phys. Rev. B73(15), 155333 (2006). [CrossRef]
  15. H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency,” Appl. Phys. Lett.88(23), 233114 (2006). [CrossRef]
  16. S. X. Zhang, I. S. Kim, and L. J. Lauhon, “Stoichiometry engineering of monoclinic to rutile phase transition in suspended single crystalline vanadium dioxide nanobeams,” Nano Lett.11(4), 1443–1447 (2011). [CrossRef] [PubMed]
  17. S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B Condens. Matter38(18), 12966–12976 (1988). [CrossRef] [PubMed]
  18. L. Y. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009). [CrossRef] [PubMed]
  19. J. Wu, D. M. Zhang, Q. J. Lu, H. R. Gutierrez, and P. C. Eklund, “Polarized Raman scattering from single GaP nanowires,” Phys. Rev. B81(16), 165415 (2010). [CrossRef]
  20. The nonlinear dependence between the Raman intensity and excitation power particularly at higher powers is attributed to laser-induced partial melting of the nanowire.
  21. H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Phys. Rev. B Condens. Matter43(3), 2299–2304 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited