OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5237–5242

A stretch-tunable plasmonic structure with a polarization-dependent response

Xiaolong Zhu, Sanshui Xiao, Lei Shi, Xiaohan Liu, Jian Zi, Ole Hansen, and N. Asger Mortensen  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5237-5242 (2012)
http://dx.doi.org/10.1364/OE.20.005237


View Full Text Article

Enhanced HTML    Acrobat PDF (2098 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate a stretchable plasmonic structure composed of a monolayer array of gold semishells with dielectric cores on an elastic PDMS substrate. The composite structure is fabricated using simple and inexpensive self-assembly and transfer-printing techniques, and it supports Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of this plasmonic structure can be reconfigured from hexagonal to monoclinic, leading to resonance frequency shifts from 200 THz to 191 THz for the TM polarization and from 200 THz to 198 THz for the TE polarization with a strain up to 20%, respectively. Compared with previously reported tunable plasmonic structures, the reconfiguration of lattice symmetry offers a promising approach to tune the surface plasmon resonance with a polarization-dependent response at the standard telecommunication band, and such tunable plasmonic structure might be exploited in realizing photonic devices such as sensors, switches and filters.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 20, 2012
Revised Manuscript: February 8, 2012
Manuscript Accepted: February 10, 2012
Published: February 16, 2012

Citation
Xiaolong Zhu, Sanshui Xiao, Lei Shi, Xiaohan Liu, Jian Zi, Ole Hansen, and N. Asger Mortensen, "A stretch-tunable plasmonic structure with a polarization-dependent response," Opt. Express 20, 5237-5242 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  3. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108, 46–493 (2008). [CrossRef]
  4. S. Xiao, L. Peng, and N. A. Mortensen, “Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures,” Opt. Express18, 6040–6047 (2010). [CrossRef] [PubMed]
  5. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332, 702–704 (2011). [CrossRef] [PubMed]
  6. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461, 629–632 (2009). [CrossRef] [PubMed]
  7. H. A. Atwater and A. B. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mat.9, 205–213 (2006). [CrossRef]
  8. X. Zhang, B. Sun, J. M. Hodgkiss, and R. H. Friend, “Tunable ultrafast optical switching via waveguided gold nanowires,” Adv. Mater.20, 4455–4459 (2008). [CrossRef]
  9. C. Jeppesen, S. S. Xiao, N. A. Mortensenb, and A. Kristensen, “Extended verification of scaling behavior in split-ring resonators,” Opt. Commun.284, 799–801 (2011). [CrossRef]
  10. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8, 281–286 (2008). [CrossRef]
  11. H. L. Chen, K. C. Hsieh, C. H. Lin, and S. H. Chen, “Using direct nanoimprinting of ferroelectric films to prepare devices exhibiting bi-directio nally tunable surface plasmon resonances,” Nanotechnology19, 435304 (2008). [CrossRef] [PubMed]
  12. G. Xu, C. M. Huang, M. Tazawa, P. Jin, and D. M. Chen, “Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance,” J. Appl. Phys.104, 053102 (2008). [CrossRef]
  13. Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih, and Y. F. Chen, “Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite,” Appl. Phys. Lett.96, 041904 (2010). [CrossRef]
  14. S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, “Tunable surface plasmon resonance on an elastomeric substrate,” Opt. Express17, 8542–8547 (2009). [CrossRef] [PubMed]
  15. R. M. Cole, S. Mahajan, and J. J. Baumberg, “Stretchable metal-elastomer nanovoids for tunable plasmons,” Appl. Phys. Lett.95, 154103 (2009). [CrossRef]
  16. X. L. Zhu, L. Shi, X. H. Liu, J. Zi, and Z. L. Wang, “A mechanically tunable plasmonic structure composed of a monolayer array of metal-capped colloidal spheres on an elastomeric substrate,” Nano Res.3, 807–812 (2010). [CrossRef]
  17. J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, “Fabrication of centimeter-sized single-Domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces,” Langmuir26, 7859–7864 (2010). [CrossRef] [PubMed]
  18. Y. Ding, S. Garland, M. Howland, A. Revzin, and T. Pan, “Universal nanopatternable interfacial bonding,” Adv. Mater.23, 5551–5556 (2011). [CrossRef] [PubMed]
  19. S. Xiao, J. J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nearly zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010). [CrossRef]
  20. T. A. Kelf, Y. Sugawara, R. M. Cole, and J. J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74, 245415 (2006). [CrossRef]
  21. Q. G. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express19, 23889–23900 (2011). [CrossRef] [PubMed]
  22. N. S. King, Y. Li, C. Ayala-Orozco, T. Brannan, P. Nordlander, and N. J. Halas, “Angle- and spectral-dependent light scattering from plasmonic nanocups,” ACS Nano5, 7254–7262 (2011). [CrossRef] [PubMed]
  23. P. V. Dorpe and J. Ye, “Semishells: versatile plasmonic nanoparticles,” ACS Nano5, 6774–6778 (2011). [CrossRef] [PubMed]
  24. L. Shi, H. W. Yin, X. L. Zhu, X. H. Liu, and J. Zi, “Direct observation of iso-frequency contour of surface modes in defective photonic crystals in real space,” Appl. Phys. Lett.97, 251111 (2010). [CrossRef]
  25. CST Microwave Studio, CST GmbH, Germany.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited