OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5281–5290

Dispersion control in square lattice photonic crystal fiber using hollow ring defects

Jiyoung Park, Sejin Lee, Sungrae Lee, So Eun Kim, and Kyunghwan Oh  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5281-5290 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new dispersion control scheme by introducing hollow ring defects having a central air hole and a GeO2-or F-doped silica ring with in a square lattice photonic crystal fiber. We confirmed the flexible dispersion controllability in the proposed structure in two aspects of dispersion managements: ultra-flattened near-zero dispersion in the 530nm-bandwidth over all communication bands and dispersion compensation in C, L, and U band with a high compensation ratio of 0.96~1.0 in reference to the standard single mode fiber. The proposed SLPCFs were also estimated to have an inherently low splice loss due to the index contrast between the doped-ring and silica that kept a good guidance even along with collapsed air holes, which cannot be achieved in conventional PCFs.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2330) Fiber optics and optical communications : Fiber optics communications
(260.2030) Physical optics : Dispersion
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 22, 2011
Revised Manuscript: February 5, 2012
Manuscript Accepted: February 13, 2012
Published: February 17, 2012

Jiyoung Park, Sejin Lee, Sungrae Lee, So Eun Kim, and Kyunghwan Oh, "Dispersion control in square lattice photonic crystal fiber using hollow ring defects," Opt. Express 20, 5281-5290 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. M. Madani and K. Kikuchi, “Design theory of long-distance WDM dispersion-managed transmission system,” J. Lightwave Technol.17(8), 1326–1335 (1999). [CrossRef]
  2. M. Bass and E. W. V. Stryland, Fiber Optics Handbook: Fiber, Devices, and Systems for Optical Communications (McGraw-Hill, 2002), Chap. 13.
  3. S. Yin, K. Chung, H. Liu, P. Kurtz, and K. Reichard, “A new design for non-zero dispersion-shifted fiber (NZ-DSF) with a large effective area over 100μm2 and low bending and splice loss,” Opt. Commun.177(1-6), 225–232 (2000). [CrossRef]
  4. R. Lundin, “Dispersion flattening in a W fiber,” Appl. Opt.33(6), 1011–1014 (1994). [PubMed]
  5. L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol.6(2), 164–180 (2000). [CrossRef]
  6. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express11(8), 843–852 (2003). [CrossRef] [PubMed]
  7. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, “Characterization of microstructured optical fibers for wideband dispersion compensation,” J. Opt. Soc. Am. A20(10), 1958–1962 (2003). [CrossRef] [PubMed]
  8. F. Begum, Y. Namihira, T. Kinjo, and S. Kaijage, “Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis,” Opt. Commun.284(4), 965–970 (2011). [CrossRef]
  9. F. Begum, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, “Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses,” Opt. Rev.16(2), 54–58 (2009). [CrossRef]
  10. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett.28(12), 989–991 (2003). [CrossRef] [PubMed]
  11. F. Gérôme, J.-L. Auguste, and J.-M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett.29(23), 2725–2727 (2004). [CrossRef] [PubMed]
  12. S. Kim, Y. Jung, K. Oh, J. Kobelke, K. Schuster, and J. Kirchhof, “Defect and lattice structure for air-silica index-guiding holey fibers,” Opt. Lett.31(2), 164–166 (2006). [CrossRef] [PubMed]
  13. J. Park, S. Lee, S. Kim, and K. Oh, “Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center,” Opt. Express19(3), 1921–1929 (2011). [CrossRef] [PubMed]
  14. T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express18(25), 25556–25566 (2010). [CrossRef] [PubMed]
  15. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” J. Lightwave Technol.23(2), 524–532 (2005). [CrossRef]
  16. S. Lee, J. Park, Y. Jeong, H. Jung, and K. Oh, “Guided wave analysis of hollow optical fiber for mode coupling device applications,” J. Lightwave Technol.27(22), 4919–4926 (2009). [CrossRef]
  17. VitroCom, Square Tubing in Borosilicate and Clear Fused Quartz glasses, http://www.vitrocom.com/categories/view/25/Square_Tubing
  18. A. Bouk, A. Cucinotta, F. Poli, and S. Selleri, “Dispersion properties of square-lattice photonic crystal fibers,” Opt. Express12(5), 941–946 (2004). [CrossRef] [PubMed]
  19. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron.38(7), 927–933 (2002). [CrossRef]
  20. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1209 (1965). [CrossRef]
  21. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt.23(24), 4486–4493 (1984). [CrossRef] [PubMed]
  22. J. W. Fleming and D. L. Wood, “Refractive index dispersion and related properties in fluorine doped silica,” Appl. Opt.22(19), 3102–3104 (1983). [CrossRef] [PubMed]
  23. Y. L. Hoo, W. Jin, J. Ju, and H. L. Ho, “Loss analysis of single-mode fiber/photonic-crystal fiber splice,” Microw. Opt. Technol. Lett.40(5), 378–380 (2004). [CrossRef]
  24. B. Kuhlmey, G. Renversez, and D. Maystre, “Chromatic dispersion and losses of microstructured optical fibers,” Appl. Opt.42(4), 634–639 (2003). [CrossRef] [PubMed]
  25. F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, “Single-mode regime of square-lattice photonic crystal fibers,” J. Opt. Soc. Am. A22(8), 1655–1661 (2005). [CrossRef] [PubMed]
  26. Corning SMF-28 CPC6 Single-Mode Optical Fibre Product information (Corning, Ithaca, N.Y., 1998).
  27. V. Finazzi, T. M. Monro, and D. J. Richardson, “The role of confinement loss in highly nonlinear silica holey fibers,” IEEE Photon. Technol. Lett.15(9), 1246–1248 (2003). [CrossRef]
  28. L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express16(21), 16423–16430 (2008). [CrossRef] [PubMed]
  29. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express11(7), 818–823 (2003). [CrossRef] [PubMed]
  30. K. Saito, M. Yamaguchi, H. Kakiuchida, A. J. Ikushima, K. Ohsono, and Y. Kurosawa, “Limit of the Rayleigh scattering loss in silica fiber,” Appl. Phys. Lett.83(25), 5175–5177 (2003). [CrossRef]
  31. CorActive Passive Fibers for Component & Laser Delivery Applications Product information (CorActive High-Tech, Inc., Québec, Canada, 2010–2011)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited