OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5313–5318

175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes

Andreas Schmidt, Philipp Koopmann, Günter Huber, Peter Fuhrberg, Sun Young Choi, Dong-Il Yeom, Fabian Rotermund, Valentin Petrov, and Uwe Griebner  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5313-5318 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single–walled carbon nanotube saturable absorbers were designed and fabricated for passive mode-locking of bulk lasers operating in the 2 μm spectral range. Mode-locked lasers based on Tm:Lu2O3 single crystals containing different Tm3+-doping concentrations were studied. Nearly transform-limited pulses as short as 175 fs at 2070 nm were generated at 88 MHz repetition rate.

© 2012 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 4, 2012
Revised Manuscript: February 8, 2012
Manuscript Accepted: February 8, 2012
Published: February 17, 2012

Andreas Schmidt, Philipp Koopmann, Günter Huber, Peter Fuhrberg, Sun Young Choi, Dong-Il Yeom, Fabian Rotermund, Valentin Petrov, and Uwe Griebner, "175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes," Opt. Express 20, 5313-5318 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys.8(10), 1100–1128 (2007). [CrossRef]
  2. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, “Mid-infrared Fourier transform spectroscopy with a broadband frequency comb,” Opt. Express18(21), 21861–21872 (2010). [CrossRef] [PubMed]
  3. A. Härkönen, C. Grebing, J. Paajaste, R. Koskinen, J.-P. Alanko, S. Suomalainen, G. Steinmeyer, and M. Guina, “Modelocked GaSb disk laser producing 384 fs pulses at 2 μm wavelength,” Electron. Lett.47, 454–456 (2011).
  4. L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber laser,” Appl. Phys. Lett.67, 19–21 (1995). [CrossRef]
  5. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, “190-fs passively mode-locked thulium fiber laser with a low threshold,” Opt. Lett.21(12), 881–883 (1996). [CrossRef] [PubMed]
  6. M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ,” Opt. Lett.33(7), 690–692 (2008). [CrossRef] [PubMed]
  7. P. Koopmann, R. Peters, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 µm,” Appl. Phys. B102, 19–24 (2011).
  8. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36(6), 948–950 (2011). [CrossRef] [PubMed]
  9. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, “Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber,” Opt. Express17, 11007–11009 (2009). [PubMed]
  10. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express17(4), 2358–2363 (2009). [CrossRef] [PubMed]
  11. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett.21(3), 128–130 (2009). [CrossRef]
  12. F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. Brown, “Femtosecond mode-locked Tm(3+) and Tm(3+)-Ho(3+) doped 2 μm glass lasers,” Opt. Express18(21), 22090–22098 (2010). [CrossRef] [PubMed]
  13. A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. Brown, M. D. Dawson, and W. Sibbett, “Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm,” Opt. Express19(10), 9995–10000 (2011). [CrossRef] [PubMed]
  14. A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, “Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 µm,” Opt. Lett.35, 172–175 (2010). [PubMed]
  15. A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. Brown, and W. Sibbett, “Femtosecond (191 fs) NaY(WO4)2 Tm,Ho-codoped laser at 2060 nm,” Opt. Lett.35(18), 3027–3029 (2010). [CrossRef] [PubMed]
  16. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable mirrors based on polymer embedded carbon nanotubes,” Opt. Express13, 8025–8031 (2005). [PubMed]
  17. A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov, and U. Griebner, “Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1 µm,” Opt. Express17, 20109–20116 (2009). [PubMed]
  18. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater.20, 1937–1943 (2010).
  19. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high purity Yb:Lu2O3,” J. Cryst. Growth310(7-9), 1934–1938 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited