OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5344–5355

Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber

Anna Mazhorova, Andrey Markov, Andy Ng, Raja Chinnappan, Olga Skorobogata, Mohammed Zourob, and Maksim Skorobogatiy  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5344-5355 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose for the first time an E. coli bacteria sensor based on the evanescent field of the fundamental mode of a suspended-core terahertz fiber. The sensor is capable of E. coli detection at concentrations in the range of 104-109 cfu/ml. The polyethylene fiber features a 150 µm core suspended by three deeply sub-wavelength bridges in the center of a 5.1 mm-diameter cladding tube. The fiber core is biofunctionalized with T4 bacteriophages which bind and eventually destroy (lyse) their bacterial target. Using environmental SEM we demonstrate that E. coli is first captured by the phages on the fiber surface. After 25 minutes, most of the bacteria is infected by phages and then destroyed with ~1μm-size fragments remaining bound to the fiber surface. The bacteria-binding and subsequent lysis unambiguously correlate with a strong increase of the fiber absorption. This signal allows the detection and quantification of bacteria concentration. Presented bacteria detection method is label-free and it does not rely on the presence of any bacterial “fingerprint” features in the THz spectrum.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.7370) Optical devices : Waveguides
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: October 3, 2011
Revised Manuscript: January 4, 2012
Manuscript Accepted: January 18, 2012
Published: February 21, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Anna Mazhorova, Andrey Markov, Andy Ng, Raja Chinnappan, Olga Skorobogata, Mohammed Zourob, and Maksim Skorobogatiy, "Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber," Opt. Express 20, 5344-5355 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Zourob, S. Elwary, and A. P. F. Turner, eds., Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems (Springer Science + Business Media, LLC, 2008).
  2. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “High-resolution waveguide THz spectroscopy of biological molecules,” Biophys. J. 94(3), 1010–1020 (2008). [CrossRef] [PubMed]
  3. C. Markos, W. Yuan, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19(8), 7790–7798 (2011). [CrossRef] [PubMed]
  4. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16(25), 20834–20847 (2008). [CrossRef] [PubMed]
  5. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008). [CrossRef] [PubMed]
  6. T. Globus, T. Khromova, D. Woolard, and A. Samuels, “THz resonance spectra of Bacillus Subtilis cells and spores in PE pellets and dilute water solutions,” Proc. SPIE 6212, 62120K, 62120K-12 (2006). [CrossRef]
  7. A. Bykhovski, X. Li, T. Globus, T. Khromova, B. Gelmont, D. Woolard, A. C. Samuels, and J. O. Jensen, “THz absorption signature detection of genetic material of E. coli and B. subtilis,” Proc. SPIE 5995, 59950N, 59950N-10 (2005). [CrossRef]
  8. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005). [CrossRef]
  9. L. Cheng, S. Hayashi, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008). [CrossRef]
  10. B. You, T.-A. Liu, J.-L. Peng, C.-L. Pan, and J.-Y. Lu, “A terahertz plastic wire based evanescent field sensor for high sensitivity liquid detection,” Opt. Express 17(23), 20675–20683 (2009). [CrossRef] [PubMed]
  11. P. Arora, A. Sindhu, N. Dilbaghi, and A. Chaudhury, “Biosensors as innovative tools for the detection of food borne pathogens,” Biosens. Bioelectron. 28(1), 1–12 (2011). [CrossRef] [PubMed]
  12. M. N. Velasco-Garcia, “Optical biosensors for probing at the cellular level: a review of recent progress and future prospects,” Semin. Cell Dev. Biol. 20(1), 27–33 (2009). [CrossRef] [PubMed]
  13. S. K. Arya, A. Singh, R. Naidoo, P. Wu, M. T. McDermott, and S. Evoy, “Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance,” Analyst (Lond.) 136(3), 486–492 (2011). [CrossRef] [PubMed]
  14. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513 (2006).
  15. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  16. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011). [CrossRef] [PubMed]
  17. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007). [CrossRef]
  18. L. Duvillaret, F. Garet, and J.-L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996). [CrossRef]
  19. J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett. 29(14), 1617–1619 (2004). [CrossRef] [PubMed]
  20. L. R. Engelking, Textbook of Veterinary Physiological Chemistry (Teton NewMedia, 2004) Chap.1.
  21. W. Shu, J. Liu, H. Ji, and M. Lu, “Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 å resolution,” J. Mol. Biol. 299(4), 1101–1112 (2000). [CrossRef] [PubMed]
  22. A. Bykhovski and B. Gelmont, “The influence of environment on terahertz spectra of biological molecules,” J. Phys. Chem. B 114(38), 12349–12357 (2010). [CrossRef] [PubMed]
  23. M. Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14(20), 1128–1130 (1989). [CrossRef] [PubMed]
  24. R. A. Cheville and D. Grischkowsky, “Far-infrared foreign and self-broadened rotational linewidths of high-temperature water vapor,” J. Opt. Soc. Am. B 16(2), 317–322 (1999). [CrossRef]
  25. J. E. K. Laurens and K. E. Oughstun, “Electromagnetic impulse response of triply-distilled water” in Proceedings of IEEE Conference on Ultra-Wideband Short-Pulse Electromagnetics 4 (Tel-Aviv, Israel, 1998), 243–264.
  26. J. R. Birch, J. D. Dromey, and J. Lesurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21(4), 225–228 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited