OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5384–5391

Liquid crystal gratings based on alternate TN and PA photoalignment

Wei Hu, Abhishek Srivastava, Fei Xu, Jia-Tong Sun, Xiao-Wen Lin, Hong-Qing Cui, Vladimir Chigrinov, and Yan-Qing Lu  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5384-5391 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1614 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diffraction grating is proposed by periodically defining the liquid-crystal director distribution to form alternate parallel aligned and twist nematic regions in a cell placed between two crossed polarizers. Based on the combined phase and amplitude modulation, both 1D and 2D tunable gratings are demonstrated. Low voltage ON/OFF switching of 1st order diffracted light with extinction ratio over 80 is achieved within a small voltage interval of 0.15 Vrms. Unique four-state feature of the cell is obtained and their applications in optical logic devices are discussed.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.3710) Materials : Liquid crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: December 12, 2011
Revised Manuscript: February 2, 2012
Manuscript Accepted: February 2, 2012
Published: February 21, 2012

Wei Hu, Abhishek Srivastava, Fei Xu, Jia-Tong Sun, Xiao-Wen Lin, Hong-Qing Cui, Vladimir Chigrinov, and Yan-Qing Lu, "Liquid crystal gratings based on alternate TN and PA photoalignment," Opt. Express 20, 5384-5391 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. M. Gibbons and S. T. Sun, “Optically generated liquid crystal gratings,” Appl. Phys. Lett.65(20), 2542–2544 (1994). [CrossRef]
  2. X. Zhao, A. Bermak, F. Boussaid, T. Du, and V. G. Chigrinov, “High-resolution photoaligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum,” Opt. Lett.34(23), 3619–3621 (2009). [CrossRef] [PubMed]
  3. E. Jang, H. R. Kim, Y. J. Na, and S. D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett.91(7), 071109 (2007). [CrossRef]
  4. X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. B. Jin, and Y. Q. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Advances1(3), 032133 (2011). [CrossRef]
  5. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. W. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12(25), 6382–6389 (2004). [CrossRef] [PubMed]
  6. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett.67(18), 2588–2590 (1995). [CrossRef]
  7. W. Y. Wu and A. Y. G. Fuh, “Rewritable liquid crystal gratings fabricated using photoalignment effect in dye-doped poly(vinyl alcohol) film,” Jpn. J. Appl. Phys., Part 146(10A), 6761–6766 (2007).
  8. S. Y. Huang, S. T. Wu, and A. Y. G. Fuh, “Optically switchable twist nematic grating based on a dye-doped liquid crystal film,” Appl. Phys. Lett.88(4), 041104 (2006). [CrossRef]
  9. Y. Q. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys.95(3), 810–815 (2004). [CrossRef]
  10. D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett.71(23), 3323–3325 (1997). [CrossRef]
  11. H. Q. Xianyu, S. Faris, and G. P. Crawford, “In-plane switching of cholesteric liquid crystals for visible and near-infrared applications,” Appl. Opt.43(26), 5006–5015 (2004). [CrossRef] [PubMed]
  12. B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett.30(4), 349–351 (2005). [CrossRef] [PubMed]
  13. A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and R. Manohar, “Single walled carbon nano-tube, ferroelectric liquid crystal composites: Excellent diffractive tool,” Appl. Phys. Lett.99(20), 201106 (2011). [CrossRef]
  14. M. Bouvier and T. Scharf, “Analysis of nematic-liquid-crystal binary gratings with high spatial frequency,” Opt. Eng.39(8), 2129–2137 (2000). [CrossRef]
  15. L. L. Gu, X. N. Chen, W. Jiang, B. Howley, and R. T. Chen, “Fringing-field minimization in liquid-crystal-based high-resolution switchable gratings,” Appl. Phys. Lett.87(20), 201106 (2005). [CrossRef]
  16. R. G. Lindquist, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, M. Friends, and T. M. Leslie, “High-resolution liquid-crystal phase grating formed by fringing fields from interdigitated electrodes,” Opt. Lett.19(9), 670–672 (1994). [CrossRef] [PubMed]
  17. J. Yan, Y. Li, and S. T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett.36(8), 1404–1406 (2011). [CrossRef] [PubMed]
  18. B. Wen, R. G. Petschek, and C. Rosenblatt, “Nematic liquid-crystal polarization gratings by modification of surface alignment,” Appl. Opt.41(7), 1246–1250 (2002). [CrossRef] [PubMed]
  19. J. Kim, J. H. Na, and S. D. Lee, “Fully continuous liquid crystal diffraction grating with alternating semi-circular alignment by imprinting,” Opt. Express20(3), 3034–3042 (2012). [CrossRef]
  20. V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun.266(1), 1–5 (2006). [CrossRef]
  21. H. Akiyama, T. Kawara, H. Takada, H. Takatsu, V. Chigrinov, E. Prudnikova, V. Kozenkov, and H. Kwok, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst.29(10), 1321–1327 (2002). [CrossRef]
  22. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express14(22), 10558–10564 (2006). [CrossRef] [PubMed]
  23. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).
  24. N. Konforti, E. Marom, and S. T. Wu, “Phase-only modulation with twisted nematic liquid-crystal spatial light modulators,” Opt. Lett.13(3), 251–253 (1988). [CrossRef] [PubMed]
  25. V. Chigrinov, A. Muravski, H. S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 061702 (2003). [CrossRef] [PubMed]
  26. V. G. Chigrinov, V. M. Kozenkov, H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, England, August 2008).
  27. Y. A. Zaghloul and A. R. M. Zaghloul, “Complete all-optical processing polarization-based binary logic gates and optical processors,” Opt. Express14(21), 9879–9895 (2006). [CrossRef] [PubMed]
  28. Y. X. Zhang, Y. P. Chen, and X. F. Chen, “Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate,” Appl. Phys. Lett.99(16), 161117 (2011). [CrossRef]
  29. J. H. Kim, M. Yoneya, and H. Yokoyama, “Tristable nematic liquid-crystal device using micropatterned surface alignment,” Nature420(6912), 159–162 (2002). [CrossRef] [PubMed]
  30. Y. Q. Lu, X. Liang, Y. H. Wu, F. Du, and S. T. Wu, “Dual-frequency addressed hybrid-aligned nematic liquid crystal,” Appl. Phys. Lett.85(16), 3354–3356 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (1123 KB)     
» Media 2: MOV (1370 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited