OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5429–5439

Gold nanoparticles on the surface of soda-lime glass: morphological, linear and nonlinear optical characterization

E. C. Romani, Douglas Vitoreti, Paula M. P. Gouvêa, P. G. Caldas, R. Prioli, S. Paciornik, Michael Fokine, Arthur M. B. Braga, Anderson S. L. Gomes, and Isabel C. S. Carvalho  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5429-5439 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1764 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Materials presenting high optical nonlinearity, such as materials containing metal nanoparticles (NPs), can be used in various applications in photonics. This motivated the research presented in this paper, where morphological, linear and nonlinear optical characteristics of gold NPs on the surface of bulk soda-lime glass substrates were investigated as a function of nanoparticle height. The NPs were obtained by annealing gold (Au) thin films previously deposited on the substrates. Pixel intensity histogram fitting on Atomic Force Microscopy (AFM) images was performed to obtain the thickness of the deposited film. Image analysis was employed to obtain the statistical distribution of the average height of the NPs. In addition, absorbance spectra of the samples before and after annealing were measured. Finally, the nonlinear refractive index (n2) and the nonlinear absorption index (α2) at 800 nm were obtained before and after annealing by using the thermally managed eclipse Z-scan (TM-EZ) technique with a Ti:Sapphire laser (150 fs pulses). Results show that both n2 and α2 at this wavelength change signs after the annealing and that the samples presented a high nonlinear refractive index.

© 2012 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: December 21, 2011
Revised Manuscript: January 30, 2012
Manuscript Accepted: February 16, 2012
Published: February 21, 2012

E. C. Romani, Douglas Vitoreti, Paula M. P. Gouvêa, P. G. Caldas, R. Prioli, S. Paciornik, Michael Fokine, Arthur M. B. Braga, Anderson S. L. Gomes, and Isabel C. S. Carvalho, "Gold nanoparticles on the surface of soda-lime glass: morphological, linear and nonlinear optical characterization," Opt. Express 20, 5429-5439 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  2. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B16(10), 1824–1832 (1999). [CrossRef]
  3. J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys.73(3), 1043–1048 (1993). [CrossRef]
  4. A. J. Haes and R. P. Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004). [CrossRef] [PubMed]
  5. P. M. P. Gouvêa, H. Jang, I. C. S. Carvalho, M. Cremona, A. M. B. Braga, and M. Fokine, “Internal specular reflection from nanoparticle layers on the end face of optical fibers,” J. Appl. Phys.109, 103114 (2011). [CrossRef]
  6. F. Z. Henari and A. A. Dakhel, “Linear and nonlinear optical properties of gold nanoparticle-Eu oxide composite thin films,” J. Appl. Phys.104(3), 033110 (2008). [CrossRef]
  7. B. Ghosh, P. Chakraborty, S. Mohapatra, P. A. Kurian, C. Vijayan, P. C. Deshmukh, and P. Mazzoldi, “Linear and nonlinear optical absorption in copper nanocluster-glass composites,” Mater. Lett.61(23-24), 4512–4515 (2007). [CrossRef]
  8. R. P. de Melo, B. J. P. da Silva, F. E. P. dos Santos, A. Azevedo, and C. B. de Araújo, “Nonlinear refraction properties of nickel oxide thin films at 800nm,” J. Appl. Phys.106(9), 093517 (2009). [CrossRef]
  9. R. J. Warmack and S. L. Humphrey, “Observation of two surface-plasmon modes on gold particles,” Phys. Rev. B Condens. Matter34(4), 2246–2252 (1986). [CrossRef] [PubMed]
  10. F. Meriaudeau, A. Wig, A. Passian, T. Downey, M. Buncick, and T. L. Ferrell, “Gold island fiber optic sensor for refractive index sensing,” Sens. Actuators B69(1-2), 51–57 (2000). [CrossRef]
  11. S. Paciornik and M. H. P. Mauricio, “Digital imaging” in ASM Handbook Vol. 9 Metallography and Microstructures, G. F. V. Voort (ASM International, Materials Park, OH, 2004).
  12. J. S. Villarrubia, “Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation,” J. Res. Natl. Inst. Stand. Technol.102, 425–454 (1997).
  13. A. S. L. Gomes, E. L. Filho, C. B. de Araújo, D. Rativa, and R. E. de Araujo, “Thermally managed eclipse Z-scan,” Opt. Express15(4), 1712–1717 (2007). [CrossRef] [PubMed]
  14. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  15. I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater.16(18), 3476–3483 (2004). [CrossRef]
  16. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir24(10), 5233–5237 (2008). [CrossRef] [PubMed]
  17. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  18. R. A. Ganeev, A. I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, and H. Kuroda, “Nonlinear refraction in CS2,” Appl. Phys. B78(3-4), 433–438 (2004). [CrossRef]
  19. K. Jamshidi-Ghaleh, N. Mansour, and A. Namdar, “Nonlinear optical properties of sodalime glass at 800-nm femtosecond irradiation,” Laser Phys.15, 1714–1717 (2005).
  20. K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett.35(10), 1560–1562 (2010). [CrossRef] [PubMed]
  21. D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys.86(11), 6200–6205 (1999). [CrossRef]
  22. W. T. Doyle, “Absorption of light by colloids in alkali halide crystals,” Phys. Rev.111(4), 1067–1072 (1958). [CrossRef]
  23. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B3(12), 1647–1655 (1986). [CrossRef]
  24. E. Shahriari, W. M. M. Yunus, and E. Saion, “Effect of particle size on nonlinear refractive index of Au nanoparticle in PVA solution,” Braz. J. Phys.40(2), 256–260 (2010). [CrossRef]
  25. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett.25(4), 254–256 (2000). [CrossRef] [PubMed]
  26. K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett.55(18), 1823–1825 (1989). [CrossRef]
  27. R. F. Souza, M. A. R. C. Alencar, E. C. da Silva, M. R. Meneghetti, and J. M. Hickmann, “Nonlinear optical properties of Au nanoparticles colloidal system: local and nonlocal responses,” Appl. Phys. Lett.92(20), 201902 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited