OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5481–5500

3-dimensional eigenmodal analysis of plasmonic nanostructures

Hua Guo, Benedikt Oswald, and Peter Arbenz  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5481-5500 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a 3-dimensional electromagnetic eigenmodal algorithm for the theoretical analysis of resonating nano-optical structures. The method, a variant of the Jacobi–Davidson algorithm, solves the electric field vector wave, or curl-curl, equation for the electromagnetic eigenmodes of resonant optical structures with a finite element method. In particular, the method includes transparent boundary conditions that enable the analysis of resonating structures in unbounded space. We demonstrate the performance of the method. First, we calculate the modes of several dielectric resonator antennas and compare them to theoretically determined results. Second, we calculate the modes of a nano-cuboid and compare them to theoretically determined results. Third, we numerically analyze spherical nanoparticles and compare the result to the theoretical Mie solution. Fourth, we analyze optical dipole antenna configurations in order to assess the method’s capability for solving technologically relevant problems.

© 2012 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optics at Surfaces

Original Manuscript: January 18, 2012
Revised Manuscript: February 10, 2012
Manuscript Accepted: February 10, 2012
Published: February 21, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Hua Guo, Benedikt Oswald, and Peter Arbenz, "3-dimensional eigenmodal analysis of plasmonic nanostructures," Opt. Express 20, 5481-5500 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011). [CrossRef]
  2. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007). [CrossRef] [PubMed]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  5. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations,” Nano Lett.11, 637–644 (2011). [CrossRef] [PubMed]
  6. D. W. Pohl, S. G. Rodrigo, and L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett.98, 023111 (2011). [CrossRef]
  7. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon.3, 654–657 (2009). [CrossRef]
  8. M. F. Garcia-Parajo, “Optical antennas focus in on biology,” Nat. Photon.2, 201–203, (2008). [CrossRef]
  9. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325, 594–597 (2009). [CrossRef] [PubMed]
  10. G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics – An Introduction (Springer, 2002). [PubMed]
  11. Ch. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech House Books, Boston, 1990).
  12. J. Jin, The Finite Element Method in Electromagnetics (John Wiley, New York, 2002).
  13. P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, Oxford, 2003). [CrossRef] [PubMed]
  14. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics – Antennas, Microwave Circuits and Scattering Applications (IEEE Press, New York, 1998).
  15. A. Okaya and L. F. Barash, “The dielectric microwave resonator,” Proc. IRE50, 2081–2092 (1962). [CrossRef]
  16. R. K. Mongia and A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Trans. Antennas Propag.45, 1348–1356 (1997). [CrossRef]
  17. C. Bohren and D. Huffmann, Absorption and Scattering of Light by Small Particles (John Wiley, New York, 1983).
  18. S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics (John Wiley, New York, 1993).
  19. A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express17, 9688–9703 (2009). [CrossRef] [PubMed]
  20. X. Cui and D. Erni, “The influence of particle shapes on the optical response of nearly touching plasmonic nanoparticle dimers,” J. Comput. Theor. Nanosci.47, 1610–1615 (2010). [CrossRef]
  21. J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem.394, 1819–1825 (2009). [CrossRef] [PubMed]
  22. J. Smajic, C. Hafner, L. Raguin, K. Tavzarashvili, and M. Mishrikey, “Comparison of numerical methods for the analysis of plasmonic structures,” J. Comput. Theor. Nanosci.6, 763–774 (2009). [CrossRef]
  23. J. Smajic, C. Hafner, K. Tavzarashvili, and R. Vahldieck, “Numerical analysis of channel plasmon polaritons enhanced optical antennas,” J. Comput. Theor. Nanosci.5, 725–734 (2008). [CrossRef]
  24. C. G. Khoury, S. J. Norton, and T. Vo-Dinh, “Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method,” ACS Nano3, 2776–2788 (2009). [CrossRef] [PubMed]
  25. A. M. Kern and O. J. F. Martin, “Modeling near-field properties of plasmonic nanoparticles: a surface integral approach,” in Plasmonic: Nanoimaging, Nanofabrication, and their Applications V, V. M. Shalaev and D. P. Tsai, eds., Proc. SPIE7395, 739518 (2009).
  26. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11, 482–487 (2011). [CrossRef] [PubMed]
  27. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9, 399–404 (2009). [CrossRef]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  29. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt.12, 555–563 (1973). [CrossRef] [PubMed]
  30. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A: Gen. Phys.3, 233245 (1970). [CrossRef]
  31. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299, 309–312 (2002). [CrossRef]
  32. T. G. Philbin, “Electromagnetic energy momentum in dispersive media,” Phys. Rev. A83, 013823 (2011). [CrossRef]
  33. F. D. Nunes, T. C. Vasconcelos, M. Bezerra, and J. Weiner, “Electromagnetic energy density in dispersive and dissipative media,” J. Opt. Soc. Am. B28, 1544–1552 (2011). [CrossRef]
  34. L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, 1960).
  35. A. Vial, A. S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B71, 085416 (2005). [CrossRef]
  36. C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and postprocessing facilities,” Int. J. Numer. Methods Eng.79, 1309–1331 (2009). [CrossRef]
  37. F. Tisseur and K. Meerbergen, “The quadratic eigenvalue problem,” SIAM Rev. 43, 235–286 (2001). [CrossRef]
  38. P. Arbenz and M. E. Hochstenbach, “A Jacobi–Davidson method for solving complex symmetric eigenvalue problems,” SIAM J. Sci. Comput.25, 1655–1673 (2004). [CrossRef]
  39. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (SIAM, Philadelphia PA, 2000). [CrossRef]
  40. D. R. Fokkema, G. L. G. Sleijpen, and H. A. Van der Vorst, “Jacobi–Davidson style QR and QZ algorithms for the partial reduction of matrix pencils,” SIAM J. Sci. Comput.20, 94–125 (1996). [CrossRef]
  41. R. Geus, “The Jacobi–Davidson algorithm for solving large sparse symmetric eigenvalue problems.” PhD Thesis No. 14734, ETH Zurich 2002.
  42. P. Arbenz, M. Bečka, R. Geus, U. Hetmaniuk, and T. Mengotti, “On a parallel multilevel preconditioned Maxwell eigensolver,” Parallel Comput.32, 157–165 (2006). [CrossRef]
  43. P. Arbenz and R. Geus, “Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems,” Appl. Numer. Math.54, 107–121 (2005). [CrossRef]
  44. Trilinos Project Home Page, http://trilinos.sandia.gov/ .
  45. Paraview Home Page, http://www.paraview.org/ .
  46. Home Page of the Swiss National Supercomputing Centre (CSCS), http://www.cscs.ch/ .
  47. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88, 077402 (2002) [CrossRef] [PubMed]
  48. R. Fuchs and K. L. Kliewer, “Optical modes of vibration in an ionic crystal spheres,” J. Opt. Soc. Am.58, 319–330 (1968) [CrossRef]
  49. S. C. Yang, H. Kobori, C. L. He, M. H. Lin, H. Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett.10, 632–637 (2010). [CrossRef] [PubMed]
  50. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16, 9144–9154 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited