OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5538–5546

Efficient frequency shifting of dispersive waves at solitons

Amol Choudhary and Friedrich König  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5538-5546 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (978 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate frequency redshifting and blueshifting of dispersive waves at group velocity horizons of solitons in fibers. The tunnelling probability of waves that cannot propagate through the fiber-optical solitons (horizons) is measured and described analytically. For shifts up to two times the soliton spectral width, the waves frequency shift with probability exceeding 90% rather than tunnelling through the soliton in our experiment. We also discuss key features of fiber optical Cherenkov radiation such as high efficiency and large bandwidth within this framework.

© 2012 OSA

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

Original Manuscript: September 26, 2011
Revised Manuscript: December 30, 2011
Manuscript Accepted: February 5, 2012
Published: February 22, 2012

Amol Choudhary and Friedrich König, "Efficient frequency shifting of dispersive waves at solitons," Opt. Express 20, 5538-5546 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973). [CrossRef]
  2. L. F. Mollenauer, R. H. Stolen, and J. G. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980). [CrossRef]
  3. K. Kitayama, Y. Kimura, and S. Seikai, “Fiber-optic logic gate,” Appl. Phys. Lett. 46, 317–319 (1985). [CrossRef]
  4. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988). [CrossRef] [PubMed]
  5. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, “Soliton switching in fiber nonlinear directional couplers,” Opt. Lett. 13, 672–674 (1988). [CrossRef] [PubMed]
  6. M. J. LaGasse, D. Liu-Wong, J. G. Fujimoto, and H. A. Haus, “Ultrafast switching with a single-fiber interferometer,” Opt. Lett. 14311–313 (1989). [CrossRef] [PubMed]
  7. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010). [CrossRef]
  8. A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106, 163901 (2011). [CrossRef] [PubMed]
  9. M. Nazarathy, Z. Zalevsky, A. Rudnitsky, B. Larom, A. Nevet, M. Orenstein, and B. Fischer, “All-optical linear reconfigurable logic with nonlinear phase erasure,” J. Opt. Soc. Am. A 26, A21–A39 (2009). [CrossRef]
  10. S. Akhmanov, A. Sukhorukov, and A. Chirkin, “Nonstationary phenomena and spacetime analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).
  11. M. N. Islam, L. F. Mollenauer, R. H. Stolen, J. R. Simpson, and H. T. Shang, “Cross-phase modulation in optical fibers,” Opt. Lett. 12, 625–627 (1987). [CrossRef] [PubMed]
  12. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrodinger-equation,” J. Opt. Soc. Am. B 9, 91–97 (1992). [CrossRef]
  13. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).
  14. J. R. Taylor, Optical Solitons Theory and Experiment (Cambridge Press, 2005).
  15. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]
  16. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  17. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986). [CrossRef] [PubMed]
  18. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995). [CrossRef] [PubMed]
  19. L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Appl. Phys. B 77, 307–311 (2003). [CrossRef]
  20. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength,” Opt. Express 10, 1151–1159 (2002). [PubMed]
  21. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–656 (2007). [CrossRef]
  22. A. Efimov, A. Yulin, D. Skryabin, J. C. Knight, N. Joly, F. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005). [CrossRef] [PubMed]
  23. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319, 1367–1370 (2008). [CrossRef] [PubMed]
  24. S. Hill, C. E. Kuklewicz, U. Leonhardt, and F. König, “Evolution of light trapped by a soliton in a microstructured fiber,” Opt. Express 1713588–13600 (2009). [CrossRef] [PubMed]
  25. S. Robertson and U. Leonhardt, “Frequency shifting at fiber-optical event horizons: the effect of Raman deceleration,” Phys. Rev. A 81, 063835 (2010). [CrossRef]
  26. W. G. Unruh, “Experimental black-hole evaporation,” Phys. Rev. Lett. 46, 1351–1353 (1981). [CrossRef]
  27. S. M. Hawking, “Black-hole explosions,” Nature 248, 30–31 (1974). [CrossRef]
  28. S. M. Hawking, “Particle creation by black-holes,” Commun. Math. Phys. 43, 199–220 (1975). [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2006).
  30. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005). [CrossRef]
  31. V. E. Lobanov and A. P. Sukhorukov, “Total reflection, frequency, and velocity tuning in optical pulse collision in nonlinear dispersive media,” Phys. Rev. A,  82, 033809 (2010). [CrossRef]
  32. N. N. Rosanov, N. V. Vysotina, and A. N. Shatsev, “Forward light reflection from a moving inhomogeneity,” JETP Lett. 93, 308–312 (2011). [CrossRef]
  33. L. D. Landau and E. M. Lifshitz, Quantum Mechanics3, (Butterworth-Heinemann, 1981).
  34. Details of this technique will be published elsewhere.
  35. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 179858–9872 (2009). [CrossRef] [PubMed]
  36. H. Tu and S. A. Boppart, “Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers,” Opt. Express 1717983–17988 (2009). [CrossRef] [PubMed]
  37. G. Q. Chang, L. J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt.Lett. 35, 2361–2363, (2010). [CrossRef] [PubMed]
  38. G. Q. Chang, L. J. Chen, and F. X. Kärtner, “Fiber-optic Cherenkov radiation in the few-cycle regime,” Opt. Express 19, 6635–6647 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited