OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5586–5600

Pulse propagation through a slab with time-periodic dielectric function ε(t)

Jorge R. Zurita-Sánchez, J. H. Abundis-Patiño, and P. Halevi  »View Author Affiliations


Optics Express, Vol. 20, Issue 5, pp. 5586-5600 (2012)
http://dx.doi.org/10.1364/OE.20.005586


View Full Text Article

Enhanced HTML    Acrobat PDF (2612 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe pulse propagation through a slab with periodic dielectric function ε(t), thus extending our previous investigation for monochromatic incidence [Phys. Rev. A 79, 053821 (2009)]. Based on the concepts of phase and group delays, we prove that, for an incident quasi-monochromatic pulse, the transmitted pulse can be expressed as a superposition of partial pulses that are exact replicas of the incident pulse and that exit the slab with a time delay. These partial pulses have harmonic carrier frequencies ωcnΩ (n is an integer, ωc is the carrier frequency of the incident pulse, and Ω = 2π/T is the slab modulation frequency). We find numerically that these partial pulses can be fast (peak velocity vn > c or vn < 0) or slow (vnc). Further, we investigate the peak velocity vp of the outcoming pulse for several cases. We find that this peak velocity vp and the partial peak velocities vn do not diverge —as occurs to the group velocity vg of the bulk dynamic-periodic medium when ωc = Ω/2. We expect that these results could be verified in the microwave regime [see Halevi et al., Proc. SPIE 8095, 80950I (2011)].

© 2012 OSA

OCIS Codes
(350.5500) Other areas of optics : Propagation
(160.3918) Materials : Metamaterials
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Physical Optics

History
Original Manuscript: December 14, 2011
Revised Manuscript: January 19, 2012
Manuscript Accepted: January 26, 2012
Published: February 22, 2012

Citation
Jorge R. Zurita-Sánchez, J. H. Abundis-Patiño, and P. Halevi, "Pulse propagation through a slab with time-periodic dielectric function ε(t)," Opt. Express 20, 5586-5600 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-5-5586


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. G. B. Garrett and D. E. McCumber, “Propagation of a gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A1, 305–313 (1970). [CrossRef]
  2. S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett.48, 738–741 (1982). [CrossRef]
  3. S. P. Tewari and G. S. Agarwal, “Control of phase matching and nonlinear generation in dense media by resonant fields,” Phys. Rev. Lett.56, 1811–1814 (1986). [CrossRef] [PubMed]
  4. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett.64, 1107–1110 (1990). [CrossRef] [PubMed]
  5. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett.74, 666–669 (1995). [CrossRef] [PubMed]
  6. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature397, 594–598 (1999). [CrossRef]
  7. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature406, 277–279 (2000). [CrossRef] [PubMed]
  8. A. Dogariu, A. Kuzmich, H. Cao, and L. J. Wang, “Superluminal light pulse propagation via rephasing in a transparent anomalously dispersive medium,” Opt. Express8, 344–350 (2001). [CrossRef] [PubMed]
  9. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90, 113903 (2003). [CrossRef] [PubMed]
  10. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated brillouin scattering,” Opt. Express13, 82–88 (2005). [CrossRef] [PubMed]
  11. R. W. Boyd and D. J. Gauthier, “Slow and Fast Light,” in Progress in Optics, Vol. 43, E. Wolf, ed. (Elsevier, Amsterdam, 2002), pp. 497–530. [CrossRef]
  12. J. R. Zurita-Sánchez, P. Halevi, and J. C. Cervantes-González, “Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ε(t),” Phys. Rev. A79, 053821 (2009). [CrossRef]
  13. J. R. Zurita-Sánchez and P. Halevi, “Resonances in the optical response of a slab with time-periodic dielectric function ε(t),” Phys. Rev. A81, 053834 (2010). [CrossRef]
  14. F. Biancalana, A. Amann, A. V. Uskov, and E. P. O’Reilly, “Dynamics of light propagation in spatiotemporal dielectric structures,” Phys. Rev. E75, 046607 (2007). [CrossRef]
  15. Y. Xiao, G. P. Agrawal, and D. N. Maywar, “Spectral and temporal changes of optical pulses propagating through time-varying linear media,” Opt. Lett.36, 505–507 (2011). [CrossRef] [PubMed]
  16. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics1, 293–296 (2007). [CrossRef]
  17. M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, “Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity,” Opt. Express15, 11472–11480 (2007). [CrossRef] [PubMed]
  18. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett.102, 043907 (2009). [CrossRef] [PubMed]
  19. T. Kampfrath, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and L. Kuipers, “Ultrafast adiabatic manipulation of slow light in a photonic crystal,” Phys. Rev. A81, 043837 (2010). [CrossRef]
  20. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett.96, 107401 (2006). [CrossRef] [PubMed]
  21. V. J. Logeeswaran, A. N. Stameroff, M. S. Islam, W. Wu, A. M. Bratkovsky, P. J. Kuekes, S. Y. Wang, and R. S. Williams, “Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation,” Appl. Phys. A87, 209–216 (2007). [CrossRef]
  22. E. Poutrina, S. Larouche, and D. R. Smith, “Parametric oscillator based on a single-layer resonant metamaterial,” Opt. Comm.283, 1640–1646 (2010). [CrossRef]
  23. A. R. Katko, S. Gu, J. P. Barret, B.-I. Popa, G. Shvets, and S. A. Cummer, “Phase conjugation and negative refraction using nonlinear active metamaterials,” Phys. Rev. Lett.105, 123905 (2010). [CrossRef] [PubMed]
  24. P. Halevi, U. Algredo-Badillo, and J. R. Zurita-Sánchez, “Optical response of a slab with time-periodic dielectric function ε(t): towards a dynamic metamaterial,” in Active Photonic Materials IV, G. S. Subramania and S. Foteinopoulou, eds., Proc. SPIE8095, 80950I (2011).
  25. A. Papoulis, Signal Analysis (McGraw-Hill, Tokio, 1977).
  26. P. Halevi, “Transit velocity of a pulse through a transparent plate,” Opt. Lett.11, 759–760 (1986). [CrossRef] [PubMed]
  27. P. Halevi and L. D. Valenzuela, “Propagation of a broad light pulse through a plate,” J. Opt. Soc. Am. B8, 1512–1515 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited