OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 5 — Feb. 27, 2012
  • pp: 5622–5628

Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator

S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagić, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser  »View Author Affiliations

Optics Express, Vol. 20, Issue 5, pp. 5622-5628 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We characterize the performance of a quantum well infrared photodetector (QWIP), which is fabricated as a photonic crystal slab (PCS) resonator. The strongest resonance of the PCS is designed to coincide with the absorption peak frequency at 7.6 µm of the QWIP. To accurately characterize the detector performance, it is illuminated by using single mode mid-infrared lasers. The strong resonant absorption enhancement yields a detectivity increase of up to 20 times. This enhancement is a combined effect of increased responsivity and noise current reduction. With increasing temperature, we observe a red shift of the PCS-QWIP resonance peak of −0.055 cm−1/K. We attribute this effect to a refractive index change and present a model based on the revised plane wave method.

© 2012 OSA

OCIS Codes
(040.4200) Detectors : Multiple quantum well
(230.5298) Optical devices : Photonic crystals

ToC Category:

Original Manuscript: December 23, 2011
Revised Manuscript: February 10, 2012
Manuscript Accepted: February 10, 2012
Published: February 22, 2012

S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagić, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, "Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator," Opt. Express 20, 5622-5628 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys. 74(8), R1–R81 (1993). [CrossRef]
  2. A. Rogalski, “Quantum well photoconductors in infrared detector technology,” J. Appl. Phys. 93(8), 4355 (2003). [CrossRef]
  3. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors: Physics and Applications (Springer, 2007).
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  5. M. Razeghi, S. Slivken, Y. B. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009). [CrossRef]
  6. M. Nobile, P. Klang, E. Mujagić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Quantum cascade laser utilising aluminium-free material system: InGaAs/GaAsSb lattice-matched to InP,” Electron. Lett. 45(20), 1031–1033 (2009). [CrossRef]
  7. H. Schneider, M. Walther, C. Schönbein, R. Rehm, J. Fleissner, W. Pletschen, J. Braunstein, K. Koidl, G. Weimann, J. Ziegler, and W. Cabanski, “QWIP FPAs for high-performance thermal imaging,” Physica E 7(1-2), 101–107 (2000). [CrossRef]
  8. D. Weidmann, F. K. Tittel, T. Aellen, M. Beck, D. Hofstetter, J. Faist, and S. Blaser, “Mid-infrared trace-gas sensing with a quasi- continuous-wave Peltier-cooled distributed feedback quantum cascade laser,” Appl. Phys. B 79(7), 907–913 (2004). [CrossRef]
  9. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38(6), 511–532 (2002). [CrossRef]
  10. B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010). [CrossRef]
  11. E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93(16), 161101 (2008). [CrossRef]
  12. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010). [CrossRef]
  13. S. I. Ahn, E. Mujagić, M. Nobile, H. Detz, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Electrical beam steering of Y-coupled quantum cascade lasers,” Appl. Phys. Lett. 96(14), 141113 (2010). [CrossRef]
  14. H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic Press, 2000), Chap. 1.
  15. J. Y. Andersson, L. Lundqvist, and Z. F. Paska, “Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler,” Appl. Phys. Lett. 58(20), 2264 (1991). [CrossRef]
  16. S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, “Demonstration of 640 × 512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array,” Infrared Phys. Technol. 50(2-3), 149–155 (2007). [CrossRef]
  17. S. Schartner, S. Golka, C. Pflügl, W. Schrenk, A. M. Andrews, T. Roch, and G. Strasser, “Band structure mapping of photonic crystal intersubband detectors,” Appl. Phys. Lett. 89(15), 151107 (2006). [CrossRef]
  18. S. Schartner, S. Kalchmair, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors,” Appl. Phys. Lett. 94(23), 231117 (2009). [CrossRef]
  19. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett. 96(16), 161107 (2010). [CrossRef]
  20. S. J. Lee, Z. Ku, A. Barve, J. Montoya, W. Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat Commun. 2, 286 (2011). [CrossRef] [PubMed]
  21. T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 µm),” IEEE J. Quantum Electron. 46(10), 1484–1491 (2010). [CrossRef]
  22. S. Kalchmair, H. Detz, G. D. Cole, A. M. Andrews, P. Klang, M. Nobile, R. Gansch, C. Ostermaier, W. Schrenk, and G. Strasser, “Photonic crystal slab quantum well infrared photodetector,” Appl. Phys. Lett. 98(1), 011105 (2011). [CrossRef]
  23. S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 86(4), 043104 (2005). [CrossRef]
  24. R. Gansch, S. Kalchmair, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Higher order modes in photonic crystal slabs,” Opt. Express 19(17), 15990–15995 (2011). [CrossRef] [PubMed]
  25. D. W. Prather, S. Shi, A. Sharkawy, J. Murakowski, and G. J. Schneider, Photonic Crystals: Theory, Applications and Fabrication (Wiley, 2009).
  26. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63(12), 125107 (2001). [CrossRef]
  27. H. Lipsanen, M. Sopanen, M. Taskinen, J. Tulkki, and J. Ahopelto, “Enhanced optical properties of in situ passivated near‐surface AlxGa1−xAs/GaAs quantum wells,” Appl. Phys. Lett. 68(16), 2216 (1996). [CrossRef]
  28. J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide,” J. Appl. Phys. 53(10), R123–R181 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited