OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6029–6035

Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers

Dana Shemuly, Alexander M. Stolyarov, Zachary M. Ruff, Lei Wei, Yoel Fink, and Ofer Shapira  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6029-6035 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2652 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the preparation and transmission of the lowest loss azimuthally polarized TE01- like mode in a photonic band gap (PBG) fiber. Using the nature of the mode and the properties of the band gap structure we construct a novel coupler that operates away from the band gap's center to enhance the differential losses and facilitate the radiative loss of hybrid fundamental fiber modes. Remarkably, even though the coupler is highly multimoded, a pure azimuthally polarized mode is generated after only 17cm. Theoretical calculations verify the validity of this technique and accurately predict the coupling efficiency. The generation and single mode propagation of this unique azimuthally polarized, doughnut shaped mode in a large hollow-core fiber can find numerous applications including in optical microscopy, optical tweezers, and guiding particles along the fiber.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 3, 2012
Revised Manuscript: February 19, 2012
Manuscript Accepted: February 20, 2012
Published: February 27, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Dana Shemuly, Alexander M. Stolyarov, Zachary M. Ruff, Lei Wei, Yoel Fink, and Ofer Shapira, "Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers," Opt. Express 20, 6029-6035 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barrow, “Transmission of electromagnetic waves in hollow metal tubes,” Proc. IRE 24, 1298–1328 (1936).
  2. J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides—mathematical theory,” Bell Syst. Tech. J.15, 310–333 (1936).
  3. O. Shapira, A. F. Abouraddy, Q. Hu, D. Shemuly, J. D. Joannopoulos, and Y. Fink, “Enabling coherent superpositions of iso-frequency optical states in multimode fibers,” Opt. Express18(12), 12622–12629 (2010). [CrossRef] [PubMed]
  4. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes in hollow-core photonic crystal fibers,” Opt. Express16(22), 17972–17981 (2008). [CrossRef] [PubMed]
  5. F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding,” Opt. Express18(1), 323–332 (2010). [CrossRef] [PubMed]
  6. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,” Opt. Express15(20), 13404–13414 (2007). [CrossRef] [PubMed]
  7. M. Skorobogatiy, C. Anastassiou, S. G. Johnson, O. Weisberg, T. Engeness, S. Jacobs, R. Ahmad, and Y. Fink, “Quantitative characterization of higher-order mode converters in weakly multimoded fibers,” Opt. Express11(22), 2838–2847 (2003). [CrossRef] [PubMed]
  8. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Complete modal decomposition for optical waveguides,” Phys. Rev. Lett.94(14), 143902 (2005). [CrossRef] [PubMed]
  9. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002). [CrossRef] [PubMed]
  10. D. Shemuly, Z. M. Ruff, A. M. Stolyarov, G. Spektor, S. G. Johnson, Y. Fink, and O. Shapira are preparing a manuscript to be called “Asymmetric wave propagation in planar chiral fibers.”
  11. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  12. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express9(13), 748–779 (2001). [CrossRef] [PubMed]
  13. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett.75(18), 3253–3256 (1995). [CrossRef] [PubMed]
  14. Z. Wang, M. Dai, and J. Yin, “Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide,” Opt. Express13(21), 8406–8423 (2005). [CrossRef] [PubMed]
  15. K. S. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  16. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express10(7), 324–331 (2002). [PubMed]
  17. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 066608 (2002). [CrossRef] [PubMed]
  18. T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun.203(1-2), 1–5 (2002). [CrossRef]
  19. M. Imai and E. H. Hara, “Excitation of the fundamental and low-order modes of optical fiber waveguides with gaussian beams. 2: offset beams,” Appl. Opt.14(1), 169–173 (1975). [PubMed]
  20. Z. Ruff, D. Shemuly, X. Peng, O. Shapira, Z. Wang, and Y. Fink, “Polymer-composite fibers for transmitting high peak power pulses at 1.55 microns,” Opt. Express18(15), 15697–15703 (2010). [CrossRef] [PubMed]
  21. T. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express11(10), 1175–1196 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited