OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6258–6266

First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber

Dechun Li, Ming Yang, Yongqing Cai, Shengzhi Zhao, and Yuanping Feng  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6258-6266 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



First principles calculations are performed for the perfect GaAs crystal, the double Ga vacancies (VGa)2, and the ternary complex defect (AsGaVAsVGa), using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional to correct the band gap and account for a proper description of the interaction between defects states and bulk states. Three shallow acceptor defect levels are found due to the creation of (VGa)2 with nearest-neighbor As dangling bonds. However, for GaAs with the ternary complex defects (AsGaVAsVGa), the As antisite AsGa and the VAs’s nearest-neighbor Ga dangling bonds provoke several donor defect states. The lowest donor defect state locates at 0.85 eV below the bottom of conduction band, which is very close to the experimental observation of the EL2 defect level. In addition, structual evolution from (VGa)2 defect to the ternary defect complex (AsGaVAsVGa) is simulated by ab initio molecular dynamic (MD) calculation at different temperatures. The MD results demonstrate that the ternary complex defect (AsGaVAsVGa) can be converted from the double Ga vacancies (VGa)2 at room temperature, and it can exist stably at higher temperature. The present work is helpful to unravel the microstructure and the forming mechanism of the EL2 defect, to find out methods to improve the performance of the GaAs saturable absorber by changing the growth conditions of GaAs crystal.

© 2012 OSA

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(160.2220) Materials : Defect-center materials
(160.6000) Materials : Semiconductor materials
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:

Original Manuscript: November 22, 2011
Revised Manuscript: February 21, 2012
Manuscript Accepted: February 29, 2012
Published: March 5, 2012

Dechun Li, Ming Yang, Yongqing Cai, Shengzhi Zhao, and Yuanping Feng, "First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber," Opt. Express 20, 6258-6266 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Zhang, L. Qian, D. Fan, and X. Deng, “Gallium arsenide: A new material to accomplish passively mode-locked Nd:YAG laser,” Appl. Phys. Lett.60(4), 419–421 (1992). [CrossRef]
  2. T. T. Kajava and A. L. Gaeta, “Q-switching of a laser-pumped Nd:YAG laser with GaAs,” Opt. Lett.21(16), 1244–1246 (1996). [CrossRef] [PubMed]
  3. . Gu, F. Zhou, K. T. Wan, T. K. Lim, S.-C. Tam, Y. L. Lam, D. Xu, and Z. Cheng, “Q-switching of a diode-pumped Nd:YVO4 laser with GaAs nonlinear output coupler,” Opt. Lasers Eng.35(5), 299–307 (2001). [CrossRef]
  4. J. Gu, F. Zhou, W. Xie, S. C. Tam, and Y. L. Lam, “Passive Q-switching of a diode-pumped Nd:YAG laser with a GaAs output coupler,” Opt. Commun.165(4-6), 245–249 (1999). [CrossRef]
  5. A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, “Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1μm,” IEEE J. Quantum Electron.24(2), 289–303 (1988). [CrossRef]
  6. R. Williams, “Determination of Deep Centers in Conducting Gallium Arsenide,” J. Appl. Phys.37(9), 3411–3416 (1966). [CrossRef]
  7. M. Kamińska, M. Skowronskii, and W. Kuszko, “Identification of the 0.82-eV Electron Trap, EL2 in GaAs, as an Isolated Antisite Arsenic Defect,” Phys. Rev. Lett.55(20), 2204–2207 (1985). [CrossRef] [PubMed]
  8. M. Levinson and J. A. Kafalas, “Site symmetry of the EL2 center in GaAs,” Phys. Rev. B Condens. Matter35(17), 9383–9386 (1987). [CrossRef] [PubMed]
  9. J. F. Wager and J. A. Van Vechten, “Atomic model for the EL2 defect in GaAs,” Phys. Rev. B Condens. Matter35(5), 2330–2339 (1987). [CrossRef] [PubMed]
  10. H. von Bardeleben, D. Stiévenard, D. Deresmes, A. Huber, and J. Bourgoin; “Identification of a defect in a semiconductor: EL2 in GaAs,” Phys. Rev. B Condens. Matter34(10), 7192–7202 (1986). [CrossRef] [PubMed]
  11. Y. X. Zou and G. Y. Wang, “Comment on “atomic model for the EL2 defect in GaAs,” Phys. Rev. B36, 10953–10955 (1988).
  12. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional,” J. Chem. Phys.123(17), 174101 (2005). [CrossRef] [PubMed]
  13. G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci.6(1), 15–50 (1996). [CrossRef]
  14. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B Condens. Matter54(16), 11169–11186 (1996). [CrossRef] [PubMed]
  15. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B Condens. Matter50(24), 17953–17979 (1994). [CrossRef] [PubMed]
  16. G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B59(3), 1758–1775 (1999). [CrossRef]
  17. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996). [CrossRef] [PubMed]
  18. J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened Coulomb potential,” J. Chem. Phys.118(18), 8207–8219 (2003). [CrossRef]
  19. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, “Influence of the exchange screening parameter on the performance of screened hybrid functionals,” J. Chem. Phys.125(22), 224106 (2006). [CrossRef] [PubMed]
  20. L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev.159(1), 98–103 (1967). [CrossRef]
  21. L. Verlet, ““Computer “Experiments” on Classical Fluids. II. Equilibrium Correlation Functions,” Phys. Rev.165(1), 201–214 (1968). [CrossRef]
  22. S. Nosé, “A unified formulation of the constant temperature molecular-dynamics methods,” J. Chem. Phys.81(1), 511–519 (1984). [CrossRef]
  23. W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A31(3), 1695–1697 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited