OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6340–6347

Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts

Ujwol Palanchoke, Vladislav Jovanov, Henning Kurz, Philipp Obermeyer, Helmut Stiebig, and Dietmar Knipp  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6340-6347 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic effects in amorphous silicon thin film solar cells with randomly textured metal back contact were investigated experimentally and numerically. The influence of different metal back contacts with and without ZnO interlayer was studied and losses in the individual layers of the solar cell were quantified. The amorphous silicon thin film solar cells were prepared on randomly textured substrates using large area production equipment and exhibit conversion efficiencies approaching 10%. The optical wave propagation within the solar cells was studied by Finite Difference Time Domain simulations. The quantum efficiency of solar cells with and without ZnO interlayer was simulated and the interplay between the reflection, quantum efficiency and absorption in the back contact will be discussed.

© 2012 OSA

OCIS Codes
(240.5770) Optics at surfaces : Roughness
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Solar Energy

Original Manuscript: November 28, 2011
Revised Manuscript: February 19, 2012
Manuscript Accepted: February 20, 2012
Published: March 5, 2012

Ujwol Palanchoke, Vladislav Jovanov, Henning Kurz, Philipp Obermeyer, Helmut Stiebig, and Dietmar Knipp, "Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts," Opt. Express 20, 6340-6347 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics12(23), 113–142 (2004). [CrossRef]
  2. M. Konagai, “Present status and future prospects of silicon thin-film solar cells,” Jpn. J. Appl. Phys.50, 030001 (2011). [CrossRef]
  3. H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys.108(4), 044505 (2010). [CrossRef]
  4. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express19(S2Suppl 2), A95–A107 (2011). [CrossRef] [PubMed]
  5. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy77(6), 917–930 (2004). [CrossRef]
  6. J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells74(1-4), 457–467 (2002). [CrossRef]
  7. K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process.69(2), 179–185 (1999). [CrossRef]
  8. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  9. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  10. J. Morris, R. R. Arya, J. G. O’Dowd, and S. Wiedeman, “Absorption enhancement in hydrogenated amorphous silicon (a-Si:H) based solar cells,” J. Appl. Phys.67(2), 1079–1087 (1990). [CrossRef]
  11. R. A. Street, “Hydrogenated amorphous silicon,” Cambridge University Press, Cambridge (1991).
  12. U. W. Paetzold, F. Hallermann, B. E. Pieters, U. Rau, R. Carius, and G. von Plessen, “Localized plasmonic losses at metal back contact of thin film silicon solar cells,” Proc. SPIE7725, 772517, 772517-9 (2010). [CrossRef]
  13. J. Hüpkes, T. Wätjen, R. V. Aubel, R. Schmitz, W. Reetz, and A. Gordijn, “Material study on Zno/Ag back reflectors for silicon thin film solar cells,” 23rd EU PVSEC Proc, Session3AV(2.24), 2419–2421 (2008).
  14. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys.95(3), 1427–1429 (2004). [CrossRef]
  15. M. Zeman, R. A. C. M. M. van Swaaij, J. W. Metselaar, and R. E. I. Schropp, “Optical modeling of a-Si:H solar cells with rough interfaces: effect of back contact and interface roughness,” J. Appl. Phys.88(11), 6436–6443 (2000). [CrossRef]
  16. J. Springer, A. Poruba, and M. Vanecek, “Improved three-dimensional optical model for thin-film silicon solar cells,” J. Appl. Phys.96(9), 5329–5337 (2004). [CrossRef]
  17. M. Zeman and J. Krc, “Optical and electrical modeling of thin-film silicon solar cells,” J. Mater. Res.23(04), 889–898 (2008). [CrossRef]
  18. R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin- film silicon solar cells,” J. Appl. Phys.110(1), 013101 (2011). [CrossRef]
  19. S. Fahr, T. Kirchartz, C. Rockstuhl, and F. Lederer, “Approaching the Lambertian limit in randomly textured thin-film solar cells,” Opt. Express19(S4Suppl 4), A865–A874 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited