OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6348–6356

Position-independent normal-mode splitting in cavities filled with zero-index metamaterials

Hai-tao Jiang, Xiao-hu Xu, Zi-li Wang, Yun-hui Li, Yasha Yi, and Hong Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 6, pp. 6348-6356 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the normal-mode splitting when an oscillator is placed in a two-dimensional photonic crystal microcavity embedded with an impedance-matched or an impedance-mismatched zero-index medium (ZIM). Because of the (nearly) uniform localized fields in the ZIM, the normal-mode splitting remains (almost) invariant no matter where the oscillator is. When a split ring resonator is coupled to a transmission-line- based effective ZIM at various locations, nearly position-independent mode splitting is observed.

© 2012 OSA

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: December 1, 2011
Revised Manuscript: January 25, 2012
Manuscript Accepted: March 1, 2012
Published: March 5, 2012

Hai-tao Jiang, Xiao-hu Xu, Zi-li Wang, Yun-hui Li, Yasha Yi, and Hong Chen, "Position-independent normal-mode splitting in cavities filled with zero-index metamaterials," Opt. Express 20, 6348-6356 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Berman, ed., Cavity Quantum Electrodynamics (Academic, 1994).
  2. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73(3), 565–582 (2001). [CrossRef]
  3. A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation,” Phys. Rev. A69(6), 062320 (2004). [CrossRef]
  4. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431(7005), 162–167 (2004). [CrossRef] [PubMed]
  5. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004). [CrossRef] [PubMed]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004). [CrossRef] [PubMed]
  7. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  8. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic crystal nanocavity,” Nat. Photonics2(11), 688–692 (2008). [CrossRef]
  9. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science327(5971), 1352–1355 (2010). [CrossRef] [PubMed]
  10. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys.71(5), 1591–1639 (1999). [CrossRef]
  11. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046608 (2004). [CrossRef] [PubMed]
  12. A. Lakhtakia, “Scattering by a nihility sphere,” Microw. Opt. Technol. Lett.48(5), 895–896 (2006). [CrossRef]
  13. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75(15), 155410 (2007). [CrossRef]
  14. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008). [CrossRef] [PubMed]
  15. K. Halterman and S. M. Feng, “Resonant transmission of electromagnetic fields through subwavelength zero-ε,” Phys. Rev. A78(2), 021805 (2008). [CrossRef]
  16. J. M. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett.96(10), 101109 (2010). [CrossRef]
  17. V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett.105(23), 233908 (2010). [CrossRef] [PubMed]
  18. H. T. Jiang, Z. L. Wang, Y. Sun, Y. H. Li, Y. W. Zhang, H. Q. Li, and H. Chen, “Enhancement of (nearly) homogeneous fields in a (effective) zero-index cavity,” J. Appl. Phys.109(7), 073113 (2011). [CrossRef]
  19. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6(12), 946–950 (2007). [CrossRef] [PubMed]
  20. M. Tokushima, H. Yamada, and Y. Arakawa, “1.5-μm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett.84(21), 4298 (2004). [CrossRef]
  21. Computer Simulation Technology (CST), User's Manual 5, in CST-Microwave Studio, 2003.
  22. P. Holmström, L. Thylén, and A. Bratkovsky, “Dielectric function of quantum dots in the strong confinement regime,” J. Appl. Phys.107(6), 064307 (2010). [CrossRef]
  23. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett.31(17), 2592–2594 (2006). [CrossRef] [PubMed]
  24. D. H. Werner, D. H. Kwon, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express15(6), 3342–3347 (2007). [CrossRef] [PubMed]
  25. X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10(8), 582–586 (2011). [CrossRef] [PubMed]
  26. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys.7, 168 (2005). [CrossRef]
  27. L. W. Zhang, Y. W. Zhang, Y. P. Yang, H. Q. Li, H. Chen, and S. Y. Zhu, “Experimental observation of Rabi splitting in effective near-zero-index media in the microwave regime,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(3), 035601 (2008). [CrossRef] [PubMed]
  28. D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, and X. Zhang, “Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity,” Phys. Rev. B77(21), 214302 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited