OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6488–6495

Wavelength conversion and unicast of 10-Gb/s data spanning up to 700 nm using a silicon nanowaveguide

Noam Ophir, Ryan K. W. Lau, Michael Menard, Xiaoliang Zhu, Kishore Padmaraju, Yoshitomo Okawachi, Reza Salem, Michal Lipson, Alexander L. Gaeta, and Keren Bergman  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6488-6495 (2012)
http://dx.doi.org/10.1364/OE.20.006488


View Full Text Article

Acrobat PDF (1559 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report extremely large probe-idler separation wavelength conversion (545 nm) and unicast (700 nm) of 10-Gb/s data signals using a dispersion-engineered silicon nanowaveguide. Dispersion-engineered phase matching in the device provides a continuous four-wave-mixing efficiency 3-dB bandwidth exceeding 800 nm. We report the first data validation of wavelength conversion (data modulated probe) and unicast (data modulated pump) of 10-Gb/s data with probe-idler separations spanning 60 nm up to 700 nm accompanied with sensitivity gain in a single device. These demonstrations further validate the silicon platform as a highly broadband flexible platform for nonlinear all-optical data manipulation.

© 2012 OSA

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

History
Original Manuscript: January 27, 2012
Revised Manuscript: February 23, 2012
Manuscript Accepted: February 24, 2012
Published: March 5, 2012

Citation
Noam Ophir, Ryan K. W. Lau, Michael Menard, Xiaoliang Zhu, Kishore Padmaraju, Yoshitomo Okawachi, Reza Salem, Michal Lipson, Alexander L. Gaeta, and Keren Bergman, "Wavelength conversion and unicast of 10-Gb/s data spanning up to 700 nm using a silicon nanowaveguide," Opt. Express 20, 6488-6495 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6488


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Syst. Tech. J.14(4), 3–9 (2010). [CrossRef]
  2. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB7.
  3. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express18(2), 1438–1443 (2010). [CrossRef] [PubMed]
  4. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.
  5. D. Hillerkuss, T. Schellinger, R. Schmogrow, M. Winter, T. Vallaitis, R. Bonk, A. Marculescu, J. Li, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, K. Weingarten, T. Ellermeyer, J. Lutz, M. Möller, M. Hübner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPC1.
  6. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.
  7. J. Hashimoto, K. Koyama, T. Katsuyama, Y. Iguchi, T. Yamada, S. Takagishi, M. Ito, and A. Ishida, “1.3 um travelling-wave GaInNAs semiconductor optical amplifier,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2003), paper WB3.
  8. Y. Nishida, M. Yamada, T. Kanamori, K. Kobayashi, J. Temmyo, S. Sudo, and Y. Ohishi, “Development of an efficient praseodymium-doped fiber amplifier,” IEEE J. Quantum Electron.34(8), 1332–1339 (1998). [CrossRef]
  9. K. S. Wu, D. Ottaway, J. Munch, D. G. Lancaster, S. Bennetts, and S. D. Jackson, “Gain-switched holmium-doped fibre laser,” Opt. Express17(23), 20872–20877 (2009). [CrossRef] [PubMed]
  10. B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(3), 412–421 (2006). [CrossRef]
  11. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, Q. Lin, and G. P. Agrawal, “Record performance of parametric amplifier constructed with highly nonlinear fibre,” Electron. Lett.39(11), 838–839 (2003). [CrossRef]
  12. Y. Zhang, Y. Gu, C. Zhu, G. Hao, A. Li, and T. Liu, “Gas source MBE grown wavelength extended 2.2 and 2.5 μm InGaAs PIN photodetectors,” Infrared Phys. Technol.47(3), 257–262 (2006). [CrossRef]
  13. F. Gholami, S. Zlatanovic, E. Myslivets, S. Moro, B. Kuo, C. Brès, A. Wiberg, N. Alic, and S. Radic, “10Gbps parametric short-wave infrared transmitter,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThC6.
  14. A. Bogoni, X. Wu, S. Nuccio, J. Wang, and A. Willner, “640Gbit/s reconfigurable OTDM add-drop multiplexer,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMK4.
  15. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. Koonen, H. J. Dorren, X. Shu, and I. Bennion, “All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier,” Opt. Lett.32(7), 835–837 (2007). [CrossRef] [PubMed]
  16. J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express18(24), 25415–25421 (2010). [CrossRef] [PubMed]
  17. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009). [CrossRef]
  18. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  19. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express18(3), 1904–1908 (2010). [CrossRef] [PubMed]
  20. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008). [CrossRef]
  21. A. Biberman, B. G. Lee, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength multicasting in silicon photonic nanowires,” Opt. Express18(17), 18047–18055 (2010). [CrossRef] [PubMed]
  22. H. Hu, H. Ji, M. Galili, M. Pu, H. Hansen Mulvad, L. Oxenløwe, K. Yvind, J. Hvam, and P. Jeppesen, “Silicon chip based wavelength conversion of ultra-high repetition rate data signals,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA8.
  23. H. Ji, M. Pu, M. Galili, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide,” J. Lightwave Technol.29(4), 426–431 (2011). [CrossRef]
  24. N. Ophir, J. Chan, K. Padmaraju, A. Biberman, A. C. Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Continuous wavelength conversion of 40-Gb/s data over 100 nm using a dispersion-engineered silicon waveguide,” IEEE Photon. Technol. Lett.23(2), 73–75 (2011). [CrossRef]
  25. J. B. Driscoll, J. I. Xiaoping Liu, W. M. J. Dadap, Y. A. Green, G. M. Vlasov, Carter, and R. M. Osgood, “All-optical format conversion of NRZ-OOK to RZ-OOK in a silicon nanowire utilizing either XPM or FWM and resulting in a receiver sensitivity gain of ~2.5 dB,” IEEE J. Sel. Top. Quantum Electron.16(1), 234–249 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited