OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6720–6727

Non-exponential decay of dark localized surface plasmons

Pavel Ginzburg and Anatoly V. Zayats  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6720-6727 (2012)
http://dx.doi.org/10.1364/OE.20.006720


View Full Text Article

Enhanced HTML    Acrobat PDF (1346 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that the decay of the weakly coupled to radiation (dark) modes of subwavelength plasmonic nanostructures is strongly nonexponential. Their lifetime is overestimated by conventional exponential relaxation time obtained in the standard Markovian approximation. These effects are manifestations of the strong dispersion and near-field feedback. The developed theoretical framework introduces an ensemble of local relaxation degrees of freedom coupled to plasmonic mode in order to describe its decay due to material losses. The macroscopic description of the decay process leads to the specific memory function of the system, evaluated from the modal and material dispersions of the plasmonic nanostructure. Proper knowledge of the relaxation behavior is vital for various applications relying on light-matter interactions of emitters with nanoscale objects, such as fluorescence manipulation, bio-imaging, sensing, spasers, sub-diffraction optics, Raman scattering, and quantum optics.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 19, 2012
Manuscript Accepted: February 17, 2012
Published: March 7, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Pavel Ginzburg and Anatoly V. Zayats, "Non-exponential decay of dark localized surface plasmons," Opt. Express 20, 6720-6727 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6720


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  2. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430(7000), 654–657 (2004). [CrossRef] [PubMed]
  3. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry‐Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: the pillar microcavity case,” Appl. Phys. Lett.69(4), 449–451 (1996). [CrossRef]
  4. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003). [CrossRef] [PubMed]
  5. L. A. Blanco and F. J. García de Abajo, “Spontaneous light emission in complex nanostructures,” Phys. Rev. B69(20), 205414 (2004). [CrossRef]
  6. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” e-print arXiv:0910.3981.
  7. Z. Jacob, J. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010). [CrossRef]
  8. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010). [CrossRef] [PubMed]
  9. A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Phys. Rev. A84(2), 023807 (2011). [CrossRef]
  10. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009). [CrossRef] [PubMed]
  11. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  12. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  13. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5(4), 709–711 (2005). [CrossRef] [PubMed]
  14. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  15. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  16. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  17. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt.12(2), 024004 (2010). [CrossRef]
  18. J. K. Kitur, V. A. Podolskiy, and M. A. Noginov, “Stimulated emission of surface plasmon polaritons in a microcylinder cavity,” Phys. Rev. Lett.106(18), 183903 (2011). [CrossRef] [PubMed]
  19. I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett.83(12), 2429–2432 (1999). [CrossRef]
  20. G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photonics Rev.2(3), 125–135 (2008). [CrossRef]
  21. P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett.35(10), 1551–1553 (2010). [CrossRef] [PubMed]
  22. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B24(8), 1968–1980 (2007). [CrossRef]
  23. A. V. Kildishev, W. Cai, U. K. Chettiar, and V. M. Shalaev, “Transformation optics: approaching broadband electromagnetic cloaking,” New J. Phys.10(11), 115029 (2008). [CrossRef]
  24. S. A. Maier, Plasmonics: Fundamentals and Applications, New York, Springer, 2007.
  25. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  26. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B72(15), 155412 (2005). [CrossRef]
  27. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  28. B. N. Khlebtsov and N. G. Khlebtsov, “Multipole plasmons in metal nanorods: scaling properties and dependence on particle size, shape, orientation, and dielectric environment,” J. Phys. Chem. C111(31), 11516–11527 (2007). [CrossRef]
  29. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett.10(4), 1405–1408 (2010). [CrossRef] [PubMed]
  30. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances on-demand for plasmonic nano-particles,” Nano Lett.11(6), 2329–2333 (2011). [CrossRef] [PubMed]
  31. A. Alù and N. Engheta, “Guided propagation along quadrupolar chains of plasmonic nanoparticles,” Phys. Rev. B79(23), 235412 (2009). [CrossRef]
  32. M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009). [CrossRef] [PubMed]
  33. M. W. Chu, V. Myroshnychenko, C. H. Chen, J. P. Deng, C. Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett.9(1), 399–404 (2009). [CrossRef] [PubMed]
  34. I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett.98(14), 147401 (2007). [CrossRef] [PubMed]
  35. L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum systems,” Rep. Prog. Phys.41(4), 587–631 (1978). [CrossRef]
  36. J. Seke and W. N. Herfort, “Deviations from exponential decay in the case of spontaneous emission from a two-level atom,” Phys. Rev. A38(2), 833–840 (1988). [CrossRef] [PubMed]
  37. C. Cao, J. Tian, and H. Cao, “Non-Markovian correlation function and direct analysis of spontaneous emission of an excited two-level atom,” Phys. Lett. A303(5-6), 318–327 (2002). [CrossRef]
  38. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999), 3rd ed.
  39. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011). [CrossRef] [PubMed]
  40. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3(3), 233–245 (1970). [CrossRef]
  41. E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett.101(16), 163902 (2008). [CrossRef] [PubMed]
  42. N. A. R. Bhat and J. E. Sipe, “Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media,” Phys. Rev. A73(6), 063808 (2006). [CrossRef]
  43. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge 1997).
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  45. I. I. Smolyaninov, “Quantum fluctuations of the refractive index near the interface between a metal and a nonlinear dielectric,” Phys. Rev. Lett.94(5), 057403 (2005). [CrossRef] [PubMed]
  46. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano4(9), 5269–5276 (2010). [CrossRef] [PubMed]
  47. C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A41(11), 6119–6128 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited