OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 6 — Mar. 12, 2012
  • pp: 6788–6807

THz detection of small molecule vapors in the atmospheric transmission windows

Joseph S. Melinger, Yihong Yang, Mahboubeh Mandehgar, and D. Grischkowsky  »View Author Affiliations


Optics Express, Vol. 20, Issue 6, pp. 6788-6807 (2012)
http://dx.doi.org/10.1364/OE.20.006788


View Full Text Article

Enhanced HTML    Acrobat PDF (1762 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a low power beam of ultrashort THz pulses that propagate in the ambient laboratory environment we have measured the rotational signatures of small molecule vapors at frequencies within the atmospheric transmission windows. We investigate two types of apparatus. In the first type the THz beam propagates along a 6.7 meter round trip path that is external to the spectrometer, and which contains a long sample tube (5.4 meter round trip path) that holds the analyte vapor. The environment of the tube is controlled to simulate dry or humid conditions. In the second apparatus the THz beam propagates over a much longer 170 meter round trip path with analyte vapor contained in a relatively short 1.2 meter round trip path sample chamber. We describe the rotational signatures for each apparatus in the presence of the strong interference from water vapor absorption. For the shorter path long-tube apparatus we find that the peak detection sensitivity is sufficient to resolve a 1% absorption feature. For the more challenging 170 meter path apparatus we find that the peak detection sensitivity is sufficient to resolve a 3-5% absorption feature. The experiments presented here represent a first step towards using ultrashort THz pulses for coherent broad band detection of small molecule gases and vapors under ambient conditions.

© 2012 OSA

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: January 4, 2012
Revised Manuscript: February 20, 2012
Manuscript Accepted: February 21, 2012
Published: March 8, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Joseph S. Melinger, Yihong Yang, Mahboubeh Mandehgar, and D. Grischkowsky, "THz detection of small molecule vapors in the atmospheric transmission windows," Opt. Express 20, 6788-6807 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6788


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. E. Burch and D. A. Gryvnak, “Continuum absorption by water vapor in the infrared and millimeter regions,” in Atmospheric Water Vapor, A. Deepak, T.D. Wilkerson, and L.H. Ruhnke, eds. (Academic Press, 1980).
  2. Yu. A. Dryagin, A. G. Kislyakov, L. M. Kukin, A. I. Naumov, and L. I. Fedosyev, “Measurement of atmospheric absorption of radio waves in the range 1.36-3.0 mm,” Isvestya VUZ Radiosphsica9, 624–627 (1966).
  3. V. Ya. Ryadov and N. I. Furashov, “Investigation of the spectrum of radiowave absorption by atmospheric water vapor in the 1.15 to 1.5 mm range,” Radio Phys. Quantum Electron.15(10), 1124–1128 (1972). [CrossRef]
  4. D. E. Burch, “Absorption of Infrared Radiant Energy by CO2 and H2O. III. Absorption by H2O between 0.5 and 36 cm−1,” J. Opt. Soc. Am.58(10), 1383–1394 (1968). [CrossRef]
  5. T. Kuhn, A. Bauer, M. Godon, S. Bühler, and K. Künzi, “Water vapor continuum: absorption measurements at 350 GHz and model calculations,” J. Quant. Spectrosc. Radiat. Transf.74(5), 545–562 (2002). [CrossRef]
  6. R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Mores, C. C. Zammit, D. H. Martin, D. P. Rice, and E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100-1000 GHz,” Infrared Phys.18(5-6), 819–825 (1978). [CrossRef]
  7. V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” J. Quant. Spectrosc. Radiat. Transf.91(3), 287–295 (2005). [CrossRef]
  8. V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Praser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transf.109(3), 458–467 (2008). [CrossRef]
  9. E. Serabyn and E. W. Weisstein, “Calibration of planetary brightness temperature spectra at near-millimeter and submillimeter wavelengths with a Fourier-transform spectrometer,” Appl. Opt.35(16), 2752–2763 (1996). [CrossRef] [PubMed]
  10. J. R. Pardo, E. Serabyn, and J. Cernicharo, “Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino Conditions: implications for broadband opacity contributions,” J. Quant. Spectrosc. Radiat. Transf.68(4), 419–433 (2001). [CrossRef]
  11. A. I. Meshkov and F. C. De Lucia, “Laboratory measurements of dry air atmospheric absorption with a millimeter wave cavity ring down spectrometer,” J. Quant. Spectrosc. Radiat. Transf.108(2), 256–276 (2007). [CrossRef]
  12. H. J. Liebe, “The atmospheric water vapor continuum below 300 GHz,” Int. J. Infrared Millim. Waves5(2), 207–227 (1984). [CrossRef]
  13. H. J. Liebe, “MPM-an atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves10(6), 631–650 (1989). [CrossRef]
  14. J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): An improved model for millimeter/submillimeter applications,” IEEE Trans. Antenn. Propag.49(12), 1683–1694 (2001). [CrossRef]
  15. F. C. De Lucia, “Spectroscopy in the THz spectral region,” in Sensing with THz Radiation, D. Mittleman ed. (Springer-Verlag, 2003).
  16. N. Gopalsami and A. C. Raptis, “Millimeter-wave radar sensing of airborne chemicals,” IEEE Trans. Microw. Theory Tech.49(4), 646–653 (2001). [CrossRef]
  17. H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE95(8), 1514–1527 (2007). [CrossRef]
  18. Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express19(9), 8830–8838 (2011). [CrossRef] [PubMed]
  19. Y. Yang, M. Mandeghar, and D. Grischkowsky, “Broad-band THz pulse transmission through the atmosphere,” IEEE Trans. Terahertz Sci. Technol.1(1), 264–273 (2011). [CrossRef]
  20. J. S. Melinger, A. Shutler, Y. Yang, and D. Grischkowsky, “Long path THz detection of small molecule vapors in the atmospheric transparency windows.” Conference on Lasers and Electro-Optics CLEO-2011 OSA Technical Digest (Optical Society of America, Washington, D.C., 2011), CThEE7.
  21. R. A. Cheville and D. Grischkowsky, “Foreign and self broadened rotational linewidths of high temperature water,” J. Opt. Soc. Am. B16(2), 317–322 (1999). [CrossRef]
  22. M. Kessler, H. Ring, R. Tramborulo, and W. Gordy, “Microwave spectra and molecular structure of methyl cyanide and isomethyl cyanide,” Phys. Rev.79(1), 54–56 (1950). [CrossRef]
  23. R. Bocquet, G. Wlodarczak, A. Bauer, and J. Demaison, “The sub-millimeter wave rotational spectrum of methyl cyanide: Analysis of the ground and low-lying excited vibrational states,” J. Mol. Spectrosc.127(2), 382–389 (1988). [CrossRef]
  24. H. Harde, S. Keiding, and D. Grischkowsky, “THz commensurate echoes: Periodic rephasing of molecular transitions in free-induction decay,” Phys. Rev. Lett.66(14), 1834–1837 (1991). [CrossRef] [PubMed]
  25. D. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998). [CrossRef]
  26. H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Sub-millimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transf.60(5), 883–890 (1998).Access to specific catalog entries may be found at http://spec.jpl.nasa.gov/ [CrossRef]
  27. L. S. Rothman, E. Gordon, A. Barbe, D. Chris Brenner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf.110(9-10), 533–572 (2009). [CrossRef]
  28. T. Hattori, K. Egawa, S. Ookuma, and T. Itanani, “Intense terahertz pulses from large aperture antenna with interdigitated electrodes,” Jpn. J. Appl. Phys.45(15), L422–L424 (2006). [CrossRef]
  29. F. C. De Lucia, D. A. Petkie, and H. O. Everitt, “A double resonance approach to submillimeter terahertz remote sensing at atmospheric pressure,” IEEE J. Quantum Electron.45(2), 163–170 (2009). [CrossRef]
  30. C. D. Boone, K. A. Walker, and P. F. Bernath, “An efficient analytical approach for calculating line mixing in atmospheric remote sensing applications,” J. Quant. Spectrosc. Radiat. Transf.112(6), 980–989 (2011). [CrossRef]
  31. M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic teraHz beam system,” IEEE Trans. Microw. Theory Tech.38(11), 1684–1691 (1990). [CrossRef]
  32. C. Johnson, F. J. Low, and A. W. Davidson, “Germanium and germanium-diamond bolometers operated at 4.2 K, 2.0K, 1.2K, 0.3K, and 0.1K,” Opt. Eng.19, 255 (1980).
  33. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with TeraHz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7, 2006–2015 (1990). [CrossRef]
  34. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (John Wiley, New York, 1986), Chaps. 2 and 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited