OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 6851–6859

Temperature dependence of the frequency noise in a mid-IR DFB quantum cascade laser from cryogenic to room temperature

Lionel Tombez, Stéphane Schilt, Joab Di Francesco, Pierre Thomann, and Daniel Hofstetter  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 6851-6859 (2012)
http://dx.doi.org/10.1364/OE.20.006851


View Full Text Article

Enhanced HTML    Acrobat PDF (1029 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the measurement of the frequency noise power spectral density in a distributed feedback quantum cascade laser over a wide temperature range, from 128 K to 303 K. As a function of the device temperature, we show that the frequency noise behavior is characterized by two different regimes separated by a steep transition at ≈200 K. While the frequency noise is nearly unchanged above 200 K, it drastically increases at lower temperature with an exponential dependence. We also show that this increase is entirely induced by current noise intrinsic to the device. In contrast to earlier publications, a single laser is used here in a wide temperature range allowing the direct assessment of the temperature dependence of the frequency noise.

© 2012 OSA

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(290.3700) Scattering : Linewidth
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 8, 2012
Revised Manuscript: February 25, 2012
Manuscript Accepted: March 7, 2012
Published: March 12, 2012

Citation
Lionel Tombez, Stéphane Schilt, Joab Di Francesco, Pierre Thomann, and Daniel Hofstetter, "Temperature dependence of the frequency noise in a mid-IR DFB quantum cascade laser from cryogenic to room temperature," Opt. Express 20, 6851-6859 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-6851


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002). [CrossRef] [PubMed]
  3. S. W. Sharpe, J. F. Kelly, R. M. Williams, J. S. Hartman, C. F. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Rapid-scan Doppler-limited absorption spectroscopy using mid-infrared quantum cascade lasers,” Proc. SPIE3758, 23–33 (1999). [CrossRef]
  4. T. L. Myers, R. M. Williams, M. S. Taubman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Free-running frequency stability of mid-infrared quantum cascade lasers,” Opt. Lett.27(3), 170–172 (2002). [CrossRef] [PubMed]
  5. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett.104(8), 083904 (2010). [CrossRef] [PubMed]
  6. L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, D. Hofstetter, and P. Thomann, “Frequency noise of free-running room temperature quantum cascade lasers,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CB4_3.
  7. L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, and D. Hofstetter, “Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature,” Opt. Lett.36, 3109–3111 (2011). [CrossRef] [PubMed]
  8. S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express19(19), 17996–18003 (2011). [CrossRef] [PubMed]
  9. T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, S. Blaser, and L. Hvozdara, “Direct measurement of the linewidth enhancement factor by optical heterodyning of an amplitude-modulated quantum cascade laser,” Appl. Phys. Lett.89(9), 091121 (2006). [CrossRef]
  10. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982). [CrossRef]
  11. M. Yamanishi, T. Edamura, K. Fujita, N. Akikusa, and H. Kan, “Theory of the intrinsic linewidth of quantum-cascade lasers: hidden reason for the narrow linewidth and line-broadening by thermal photons,” IEEE J. Quantum Electron.44(1), 12–29 (2008). [CrossRef]
  12. L. Tombez, S. Schilt, J. Di Francesco, T. Führer, B. Rein, T. Walther, G. Di Domenico, D. Hofstetter, and P. Thomann, “Linewidth of a quantum cascade assessed from its frequency noise spectrum and impact of the current driver,” accepted for publication in Appl. Phys. B (2012)
  13. I. D. Henning, “Linewidth broadening in semiconductor lasers due to mode competition noise,” Electron. Lett.19(22), 935–936 (1983). [CrossRef]
  14. S. Borri, S. Bartalini, P. C. Pastor, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, and P. De Natale, “Frequency-noise dynamics of mid-infrared quantum cascade lasers,” IEEE J. Quantum Electron.47(7), 984–988 (2011). [CrossRef]
  15. T. Aellen, S. Blaser, M. Beck, D. Hofstetter, J. Faist, and E. Gini, “Continuous-wave distributed-feedback quantum-cascade lasers on a Peltier cooler,” Appl. Phys. Lett.83(10), 1929 (2003). [CrossRef]
  16. S. Huxtable, A. Shakouri, P. Abraham, C. Yi-Jen, F. Xiafeng, J. E. Bowers, and A. Majumdar, “Thermal conductivity of Indium Phosphide based superlattices,” in Proc. 18th International Conference on Thermoelectrics (1999).
  17. S. H. K. Lee and J. S. Yu, “Thermal effects in quantum cascade lasers at λ~4.6 μm under pulsed and continuous-wave modes,” Appl. Phys. B106(3), 619–627 (2012). [CrossRef]
  18. G. Bosman, Noise in Physical Systems and 1/f Fluctuations (World Scientific, 2001).
  19. X. Y. Chen, F. N. Hooge, and M. R. Leys, “The temperature dependence of 1/f noise in InP,” Solid-Sate Electron.41(9), 1269–1275 (1997). [CrossRef]
  20. T. Roy, E. X. Zhang, Y. S. Puzyrev, X. Shen, D. M. Fleetwood, R. D. Schrimpf, G. Koblmueller, R. Chu, C. Poblenz, N. Fichtenbaum, C. S. Suh, U. K. Mishra, J. S. Speck, and S. T. Pantelides, “Temperature-dependence and microscopic origin of low frequency 1/f noise in GaN/AlGaN high electron mobility transistors,” Appl. Phys. Lett.99(20), 203501 (2011). [CrossRef]
  21. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49(25), 4801–4807 (2010). [CrossRef] [PubMed]
  22. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta A Mol. Biomol. Spectrosc.60(14), 3457–3468 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited