OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 6915–6926

Experimental realization of a four-photon seven-qubit graph state for one-way quantum computation

Sang Min Lee, Hee Su Park, Jaeyoon Cho, Yoonshik Kang, Jae Yong Lee, Heonoh Kim, Dong-Hoon Lee, and Sang-Kyung Choi  »View Author Affiliations

Optics Express, Vol. 20, Issue 7, pp. 6915-6926 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (928 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate the scaling up of photonic graph states through path qubit fusion. Two path qubits from separate two-photon four-qubit states are fused to generate a two-dimensional seven-qubit graph state composed of polarization and path qubits. Genuine seven-qubit entanglement is verified by evaluating the witness operator. Six qubits from the graph state are used to demonstrate the Deutsch-Jozsa algorithm for general two-bit functions with a success probability greater than 90%.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.4180) Quantum optics : Multiphoton processes
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: January 11, 2012
Revised Manuscript: February 17, 2012
Manuscript Accepted: February 23, 2012
Published: March 12, 2012

Sang Min Lee, Hee Su Park, Jaeyoon Cho, Yoonshik Kang, Jae Yong Lee, Heonoh Kim, Dong-Hoon Lee, and Sang-Kyung Choi, "Experimental realization of a four-photon seven-qubit graph state for one-way quantum computation," Opt. Express 20, 6915-6926 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Raussendorf, H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001). [CrossRef] [PubMed]
  2. H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. V. den Nest, “Measurement-based quantum computation,” Nat. Phys. 5, 19–26 (2009). [CrossRef]
  3. D. E. Browne, T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005). [CrossRef] [PubMed]
  4. C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007). [CrossRef]
  5. X.-s. Ma, A. Qarry, J. Kofler, T. Jennewein, A. Zeilinger, “Experimental violation of a Bell inequality with two different degrees of freedom of entangled particle pairs,” Phys. Rev. A 79, 042101 (2009). [CrossRef]
  6. W.-B. Gao, P. Xu, X.-C. Yao, O. Gühne, A. Cabello, C.-Y. Lu, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental realization of a controlled-not gate with four-photon six-qubit cluster states,” Phys. Rev. Lett. 104, 020501 (2010). [CrossRef] [PubMed]
  7. R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009). [CrossRef] [PubMed]
  8. W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–355 (2010). [CrossRef]
  9. P. Kalasuwan, G. Mendoza, A. Laing, T. Nagata, J. Coggins, M. Callaway, S. Takeuchi, A. Stefanov, J. L. O’Brien, “Simple scheme for expanding photonic cluster states for quantum information,” J. Opt. Soc. Am. B 27, A181–A184 (2010). [CrossRef]
  10. P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
  11. G. Vallone, E. Pomarico, P. Mataloni, F. De Martini, V. Berardi, “Realization and characterization of a two-photon four-qubit linear cluster state,” Phys. Rev. Lett. 98, 180502 (2007).
  12. K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007). [CrossRef] [PubMed]
  13. M. S. Tame, M. S. Kim, “Scalable method for demonstrating the Deutsch-Jozsa and Bernstein-Vazirani algorithms using cluster states,” Phys. Rev. A 82, 030305 (2010). [CrossRef]
  14. H. S. Park, J. Cho, J. Y. Lee, D.-H. Lee, S.-K. Choi, “Two-photon four-qubit cluster state generation based on a polarization-entangled photon pair,” Opt. Express 15, 17960–17966 (2007). [CrossRef] [PubMed]
  15. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, P. H. Everhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999). [CrossRef]
  16. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66, 033816 (2002). [CrossRef]
  17. B. J. Smith, P. J. Mosley, J. S. Lundeen, I. A. Walmsley, “Heralded generation of two-photon noon states for precision quantum metrology,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2008 Technical Digest (Optical Society of America, Washington, DC, 2008), QFI5.
  18. G. Tóth, O. Gühne, “Detecting genuine multipartite entanglement with two local measurements,” Phys. Rev. Lett. 94, 060501 (2005). [CrossRef] [PubMed]
  19. G. Tóth, O. Gühne, “Entanglement detection in the stabilizer formalism,” Phys. Rev. A 72, 022340 (2005). [CrossRef]
  20. G. Vallone, G. Donati, N. Bruno, A. Chiuri, P. Mataloni, “Experimental realization of the Deutsch-Jozsa algorithm with a six-qubit cluster state,” Phys. Rev. A 81, 050302 (2010). [CrossRef]
  21. Y.-S. Kim, O. Kwon, S. M. Lee, J.-C. Lee, H. Kim, S.-K. Choi, H. S. Park, Y.-H. Kim, “Observation of Young’s double-slit interference with the three-photon N00N state,” Opt. Express 19, 24957–24966 (2011). [CrossRef]
  22. Y.-P. Huang, J. B. Altepeter, P. Kumar, “Heralding single photons without spectral factorability,” Phys. Rev. A 82, 043826 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited