OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 6989–7001

The development and application of femtosecond laser systems

W. Sibbett, A. A. Lagatsky, and C. T. A. Brown  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 6989-7001 (2012)
http://dx.doi.org/10.1364/OE.20.006989


View Full Text Article

Enhanced HTML    Acrobat PDF (1011 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Some background as well as recent progress in the development of femtosecond lasers are discussed together with a brief outline of a few representative emergent applications in biology and medicine that are underpinned by access to such sources. We also provide a short summary of other contributions in this focus issue.

© 2012 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.7160) Medical optics and biotechnology : Ultrafast technology
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Ultrafast Optics

History
Original Manuscript: November 28, 2011
Revised Manuscript: January 26, 2012
Manuscript Accepted: January 30, 2012
Published: March 13, 2012

Virtual Issues
(2012) Advances in Optics and Photonics
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics
Modular Ultrafast Lasers (Invited Only) (2012) Optics Express

Citation
W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, "The development and application of femtosecond laser systems," Opt. Express 20, 6989-7001 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-6989


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. E. Spence, P. N. Kean, and W. Sibbett, “Sub-100fs Pulse Generation from a Self-Modelocked Titanium:Sapphire Laser” in Conference on Lasers and Electro-optics, CLEO, Techical Digest Series (Optical Society of America, 1990), 619 - 620.
  2. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett.16(1), 42–44 (1991). [CrossRef] [PubMed]
  3. A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self Mode-Locking of Lasers with Saturable Absorbers,” Appl. Phys. Lett.8(7), 174–176 (1966). [CrossRef]
  4. C. V. Shank and E. P. Ippen, “Subpicosecond kilowatt pulses from a mode-locked cw dye laser,” Appl. Phys. Lett.24(8), 373–375 (1974). [CrossRef]
  5. H. A. Haus, “Theory of Mode-Locking with a Fast Saturable Absorber,” J. Appl. Phys.46(7), 3049–3058 (1975). [CrossRef]
  6. H. A. Haus, “Theory of Mode-Locking with a Slow Saturable Absorber,” IEEE J. Quantum Electron.11(9), 736–746 (1975). [CrossRef]
  7. G. H. C. New, “The Generation of Ultrashort Laser-Pulses,” Rep. Prog. Phys.46(8), 877–971 (1983). [CrossRef]
  8. R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of Optical Pulses Shorter than 0.1 psec by Colliding Pulse Mode-Locking,” Appl. Phys. Lett.38(9), 671–672 (1981). [CrossRef]
  9. A. M. Weiner and E. P. Ippen, “Novel transient scattering technique for femtosecond dephasing measurements,” Opt. Lett.9(2), 53–55 (1984). [CrossRef] [PubMed]
  10. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett.9(1), 13–15 (1984). [CrossRef] [PubMed]
  11. P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, “Subfemtosecond pulses,” Opt. Lett.19(22), 1870–1872 (1994). [CrossRef] [PubMed]
  12. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B27(11), B51–B62 (2010). [CrossRef]
  13. P. N. Kean, X. Zhu, D. W. Crust, R. S. Grant, N. Langford, and W. Sibbett, “Enhanced mode locking of color-center lasers,” Opt. Lett.14(1), 39–41 (1989). [CrossRef] [PubMed]
  14. P. F. Moulton, “Spectroscopic and Laser Characteristics of Ti-Al2O3,” J. Opt. Soc. Am. B3(1), 125–133 (1986). [CrossRef]
  15. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett.29(12), 1366–1368 (2004). [CrossRef] [PubMed]
  16. G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro, “Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers,” Opt. Lett.19(11), 807–809 (1994). [CrossRef] [PubMed]
  17. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2(3), 435–453 (1996). [CrossRef]
  18. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron.2(3), 454–464 (1996). [CrossRef]
  19. D. H. Sutter, I. D. Jung, F. X. Kärtner, N. Matuschek, F. Morier-Genoud, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Self-starting 6.5-fs pulses from a Ti:sapphire laser using a semiconductor saturable absorber and double-chirped mirrors,” IEEE J. Sel. Top. Quantum Electron.4(2), 169–178 (1998). [CrossRef]
  20. U. Keller, ““Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,”,” Appl. Phys. B100(1), 15–28 (2010). [CrossRef]
  21. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express17(16), 14374–14388 (2009). [CrossRef] [PubMed]
  22. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 mum,” Opt. Lett.26(5), 292–294 (2001). [CrossRef] [PubMed]
  23. D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 20-fs pulses by a prismless Cr(4+):YAG laser,” Opt. Lett.27(1), 61–63 (2002). [CrossRef] [PubMed]
  24. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett.21(22), 1839–1841 (1996). [CrossRef] [PubMed]
  25. Y. J. Chai, C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, R. V. Penty, I. H. White, and W. Sibbett, “1.36-Tb/s spectral slicing source based on a Cr4+-YAG femtosecond laser,” J. Lightwave Technol.23(3), 1319–1324 (2005). [CrossRef]
  26. E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband infrared solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 690–712 (2005). [CrossRef]
  27. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445(7128), 627–630 (2007). [CrossRef] [PubMed]
  28. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picque, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 mum region with a Cr(2+):ZnSe femtosecond laser,” Opt. Express15(25), 16540–16545 (2007). [CrossRef] [PubMed]
  29. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron.38(10), 1331–1338 (2002). [CrossRef]
  30. A. E. H. Oehler, T. Südmeyer, K. J. Weingarten, and U. Keller, “100 GHz passively mode-locked Er:Yb:glass laser at 1.5 microm with 1.6-ps pulses,” Opt. Express16(26), 21930–21935 (2008). [CrossRef] [PubMed]
  31. A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. H. Liu, H. J. Zhang, J. Y. Wang, and U. Griebner, “Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses,” Opt. Lett.36(22), 4425–4427 (2011). [CrossRef] [PubMed]
  32. A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express12(17), 3928–3933 (2004). [CrossRef] [PubMed]
  33. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, ““Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B58(5), 365–372 (1994). [CrossRef]
  34. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010). [CrossRef] [PubMed]
  35. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010). [CrossRef] [PubMed]
  36. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express17(15), 12230–12245 (2009). [CrossRef] [PubMed]
  37. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express19(17), 16491–16497 (2011). [CrossRef] [PubMed]
  38. A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, S. A. Zolotovskaya, and E. U. Rafailov, “Ultrashort-pulse lasers passively mode locked by quantum-dot-based saturable absorbers,” Prog. Quantum Electron.34(1), 1–45 (2010). [CrossRef]
  39. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express13(20), 8025–8031 (2005). [CrossRef] [PubMed]
  40. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  41. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101(19), 196405 (2008). [CrossRef] [PubMed]
  42. R. W. Newson, J. Dean, B. Schmidt, and H. M. van Driel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films,” Opt. Express17(4), 2326–2333 (2009). [CrossRef] [PubMed]
  43. J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett.30(14), 1888–1890 (2005). [CrossRef] [PubMed]
  44. A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, “8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation,” Opt. Express17(2), 1070–1077 (2009). [CrossRef] [PubMed]
  45. G. Sobon, K. Krzempek, P. Kaczmarek, K. M. Abramski, and M. Nikodem, “10 GHz passive harmonic mode-locking in Er-Yb double-clad fiber laser,” Opt. Commun.284(18), 4203–4206 (2011). [CrossRef]
  46. S. Lefrançois, K. Kieu, Y. J. Deng, J. D. Kafka, and F. W. Wise, “Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber,” Opt. Lett.35(10), 1569–1571 (2010). [CrossRef] [PubMed]
  47. B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics4(5), 307–311 (2010). [CrossRef]
  48. G. Marra, R. Slavík, H. S. Margolis, S. N. Lea, P. Petropoulos, D. J. Richardson, and P. Gill, “High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser,” Opt. Lett.36(4), 511–513 (2011). [CrossRef] [PubMed]
  49. J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Q. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express14(21), 9825–9831 (2006). [CrossRef] [PubMed]
  50. R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express18(12), 13212–13219 (2010). [CrossRef] [PubMed]
  51. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B24(8), 1786–1792 (2007). [CrossRef]
  52. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il'inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phy. Lett. 87(2005).
  53. P. P. Vasil'ev, “Femtosecond superradiant emission in inorganic semiconductors,” Rep. Prog. Phys.72(7), 076501 (2009). [CrossRef]
  54. M. Xia, R. V. Penty, I. H. White, and P. P. Vasil'ev, “Superradiant Emission from a Tapered Quantum-Dot Semiconductor Diode Emitter,” 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (2010).
  55. U. Keller and A. C. Tropper, ““Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.-Rev. Sec. Phys. Lett.429, 67–120 (2006).
  56. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009). [CrossRef]
  57. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19(9), 8108–8116 (2011). [CrossRef] [PubMed]
  58. K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak Power Femtosecond Pulse Passively Mode-Locked Vertical-External-Cavity Surface-Emitting Laser,” IEEE Photon. Technol. Lett.22(14), 1021–1023 (2010). [CrossRef]
  59. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable Shaping of Femtosecond Optical Pulses by Use of 128-Element Liquid-Crystal Phase Modulator,” IEEE J. Quantum Electron.28(4), 908–920 (1992). [CrossRef]
  60. J. Garduño-Mejía, A. H. Greenaway, and D. T. Reid, “Designer femtosecond pulses using adaptive optics,” Opt. Express11(17), 2030–2040 (2003). [CrossRef] [PubMed]
  61. N. K. Metzger, W. Lubeigt, D. Burns, M. Griffith, L. Laycock, A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Ultrashort-pulse laser with an intracavity phase shaping element,” Opt. Express18(8), 8123–8134 (2010). [CrossRef] [PubMed]
  62. V. G. Savitski, A. J. Kemp, S. Calvez, and D. Burns, “Optically Pumped Saturable Bragg Reflectors: Nonlinear Spectroscopy and Application in Ultrafast Lasers,” IEEE J. Quantum Electron.46(11), 1650–1655 (2010). [CrossRef]
  63. X. M. Liu, E. U. Rafailov, D. Livshits, and D. Turchinovich, “Quantum well saturable absorber mirror with electrical control of modulation depth,” Appl. Phys. Lett.97(5), 051103 (2010). [CrossRef]
  64. S. A. Zolotovskaya, K. G. Wilcox, A. Abdolvand, D. A. Livshits, and E. U. Rafailov, “Electronically Controlled Pulse Duration Passively Mode-Locked Cr:Forsterite Laser,” IEEE Photon. Technol. Lett.21(16), 1124–1126 (2009). [CrossRef]
  65. J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett.33(9), 959–961 (2008). [CrossRef] [PubMed]
  66. A. Killi, J. Dörring, U. Morgner, M. J. Lederer, J. Frei, and D. Kopf, “High speed electro-optical cavity dumping of mode-locked laser oscillators,” Opt. Express13(6), 1916–1922 (2005). [CrossRef] [PubMed]
  67. A. H. Zewail, “Femtochemistry. Past, present, and future,” Pure Appl. Chem.72(12), 2219–2231 (2000). [CrossRef]
  68. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  69. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  70. W. H. Knox, “Ultrafast technology in telecommunications,” IEEE J. Sel. Top. Quantum Electron.6(6), 1273–1278 (2000). [CrossRef]
  71. T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature398(6727), 489–492 (1999). [CrossRef]
  72. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  73. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007). [CrossRef] [PubMed]
  74. R. P. J. Barretto, T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, “Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy,” Nat. Med.17(2), 223–228 (2011). [CrossRef] [PubMed]
  75. X. S. Xie and J. X. Cheng, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B108(3), 827–840 (2004). [CrossRef]
  76. X. S. Xie, C. W. Freudiger, W. Min, G. R. Holtom, B. W. Xu, and M. Dantus, “Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy,” Nat. Photonics5(2), 103–109 (2011). [CrossRef]
  77. T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron.5(4), 902–910 (1999). [CrossRef]
  78. N. Mamalis, “Femtosecond laser: the future of cataract surgery?” J. Cataract Refract. Surg.37(7), 1177–1178 (2011). [CrossRef] [PubMed]
  79. P. S. Binder, “Flap dimensions created with the IntraLase FS laser,” J. Cataract Refract. Surg.30(1), 26–32 (2004). [CrossRef] [PubMed]
  80. W. Sekundo, K. Kunert, C. Russmann, A. Gille, W. Bissmann, G. Stobrawa, M. Sticker, M. Bischoff, and M. Blum, “First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results,” J. Cataract Refract. Surg.34(9), 1513–1520 (2008). [CrossRef] [PubMed]
  81. L. Kessel, L. Eskildsen, M. van der Poel, and M. Larsen, “Non-invasive bleaching of the human lens by femtosecond laser photolysis,” PLoS ONE5(3), e9711 (2010). [CrossRef] [PubMed]
  82. K. Kuetemeyer, G. Kensah, M. Heidrich, H. Meyer, U. Martin, I. Gruh, and A. Heisterkamp, “Two-photon induced collagen cross-linking in bioartificial cardiac tissue,” Opt. Express19(17), 15996–16007 (2011). [CrossRef] [PubMed]
  83. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature418(6895), 290–291 (2002). [CrossRef] [PubMed]
  84. C. McDougall, D. J. Stevenson, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Targeted optical injection of gold nanoparticles into single mammalian cells,” J Biophotonics2(12), 736–743 (2009). [CrossRef] [PubMed]
  85. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. T. A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express14(16), 7125–7133 (2006). [CrossRef] [PubMed]
  86. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005). [CrossRef]
  87. X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett.91(5), 053902 (2007). [CrossRef]
  88. T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express16(18), 14024–14035 (2008). [CrossRef] [PubMed]
  89. C. T. A. Brown, D. J. Stevenson, X. Tsampoula, C. McDougall, A. A. Lagatsky, W. Sibbett, F. J. Gunn-Moore, and K. Dholakia, “Enhanced operation of femtosecond lasers and applications in cell transfection,” J Biophotonics1(3), 183–199 (2008). [CrossRef] [PubMed]
  90. F. Harth, T. Ulm, M. Lührmann, R. Knappe, A. Klehr, Th. Hoffmann, G. Erbert, and J. A. L’huillier, “High power laser pulses with voltage controlled durations of 400 – 1000 ps,” Opt. Express20(7), 7002–7007 (2012).
  91. F. Kienle, P. S. Teh, D. Lin, S.-u. Alam, J. H. V. Price, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator,” Opt. Express20(7), 7008–7014 (2012).
  92. X. Zhang, E. Schneider, G. Taft, H. Kaptyen, M. Murnane, and S. Backus, “Multi-microjoule, MHz repetition rate Ti:sapphire ultrafast regenerative amplifier system,” Opt. Express20(7), 7015–7021 (2012).
  93. K. Metzger, V. F. Olle, A. Wonfor, R. V. Penty, I. H. White, M. Mazilu, C. T. A. Brown, and W. Sibbett, “Algorithm-based continuous pulse duration tuning and performance control of a modelocked laser diode,” Opt. Express20(7), 722–7034 (2012).
  94. V. F. Olle, P. P. Vasil’ev, A. Wonfor, R. V. Penty, and I. H. White, “Ultrashort superradiant pulse generation from a GaN/InGaN heterostructure,” Opt. Express20(7), 7035–7039 (2012).
  95. K. G. Wilcox, A. H. Quarterman, V. Apostolopoulos, H. E. Beere, I. Farrer, D. A. Ritchie, and A. C. Tropper, “175 GHz, 400-fs-pulse harmonically mode-locked surface emitting semiconductor laser,” Opt. Express20(7), 7040–7045 (2012).
  96. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express20(7), 7046–7053 (2012).
  97. C. R. E. Baer, O. H. Heckl, C. J. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” Opt. Express20(7), 7054–7065 (2012).
  98. V. G. Savitski, N. K. Metzger, S. Calvez, D. Burns, W. Sibbett, and C. T. A. Brown, “Optical trapping with “on-demand” two-photon luminescence using Cr:LiSAF laser with optically addressed saturable Bragg reflector,” Opt. Express20(7), 7066–7070 (2012).
  99. J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express19(12), 11638–11653 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited