OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7119–7127

Full waveform hyperspectral LiDAR for terrestrial laser scanning

Teemu Hakala, Juha Suomalainen, Sanna Kaasalainen, and Yuwei Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7119-7127 (2012)
http://dx.doi.org/10.1364/OE.20.007119


View Full Text Article

Enhanced HTML    Acrobat PDF (2130 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design of a full waveform hyperspectral light detection and ranging (LiDAR) and the first demonstrations of its applications in remote sensing. The novel instrument produces a 3D point cloud with spectral backscattered reflectance data. This concept has a significant impact on remote sensing and other fields where target 3D detection and identification is crucial, such as civil engineering, cultural heritage, material processing, or geomorphological studies. As both the geometry and spectral information on the target are available from a single measurement, this technology will extend the scope of imaging spectroscopy into spectral 3D sensing. To demonstrate the potential of the instrument in the remote sensing of vegetation, 3D point clouds with backscattered reflectance and spectral indices are presented for a specimen of Norway spruce.

© 2012 OSA

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar
(300.6360) Spectroscopy : Spectroscopy, laser
(280.1350) Remote sensing and sensors : Backscattering

ToC Category:
Remote Sensing

History
Original Manuscript: January 10, 2012
Revised Manuscript: February 27, 2012
Manuscript Accepted: March 5, 2012
Published: March 13, 2012

Citation
Teemu Hakala, Juha Suomalainen, Sanna Kaasalainen, and Yuwei Chen, "Full waveform hyperspectral LiDAR for terrestrial laser scanning," Opt. Express 20, 7119-7127 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7119


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  2. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18(16), 16640–16645 (2010). [CrossRef] [PubMed]
  3. W. Wagner, “Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts,” ISPRS J. Photogramm. Remote Sens. 65(6), 505–513 (2010). [CrossRef]
  4. V. Thomas, J. McCaughey, P. Treitz, D. Finch, T. Noland, L. Rich, “Spatial modelling of photosynthesis for a boreal mixedwood forest by integrating micrometeorological, lidar and hyperspectral remote sensing data,” Agric. For. Meteorol. 149(3-4), 639–654 (2009). [CrossRef]
  5. T. G. Jones, N. C. Coops, T. Sharma, “Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada,” Remote Sens. Environ. 114(12), 2841–2852 (2010). [CrossRef]
  6. E. Puttonen, A. Jaakkola, P. Litkey, J. Hyyppä, “Tree classification with fused mobile laser scanning and hyperspectral data,” Sensors (Basel) 11(5), 5158–5182 (2011). [CrossRef] [PubMed]
  7. E. Honkavaara, L. Markelin, T. Rosnell, K. Nurminen, “Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry,” ISPRS J. Photogramm. Remote Sens. 67, 13–26 (2012). [CrossRef]
  8. B. Johnson, R. Joseph, M. Nischan, A. Newbury, J. Kerekes, H. Barclay, B. Willard, J. Zayhowski, “A compact, active hyperspectral imaging system for the detection of concealed targets,” Proc. SPIE 3710, 144–153 (1999). [CrossRef]
  9. M. Nischan, R. Joseph, J. Libby, J. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).
  10. G. Bishop, I. V. Veiga, M. Watson, and L. Farr, “Active spectral imaging for target detection” in Proceedings of the 3rd EMRS DTC Technical Conference (2006).
  11. S. Tan, R. M. Narayanan, “Design and performance of a multiwavelength airborne polarimetric lidar for vegetation remote sensing,” Appl. Opt. 43(11), 2360–2368 (2004). [CrossRef] [PubMed]
  12. M. Pfennigbauer and A. Ullrich, “Multi-wavelength airborne laser scanning,” in Proceedings of the International Lidar Mapping Forum, ILMF, New Orleans (2011).
  13. G. C. Guenther, P. E. LaRocque, W. J. Lillycrop, “Multiple surface channels in Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) airborne lidar,” Proc. SPIE 2258, 422–430 (1994). [CrossRef]
  14. D. M. Winker, J. R. Pelon, M. P. McCormick, “The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds,” Proc. SPIE 4893, 1–11 (2003). [CrossRef]
  15. J. B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, P. Liiva, “Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance,” Geophys. Res. Lett. 32(21), L21S02 (2005). [CrossRef]
  16. M. Godbout, J. D. Deschênes, J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010). [CrossRef] [PubMed]
  17. J. Suomalainen, T. Hakala, H. Kaartinen, E. Räikkönen, S. Kaasalainen, “Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification,” ISPRS J. Photogramm. Remote Sens. 66(5), 637–641 (2011). [CrossRef]
  18. E. Puttonen, J. Suomalainen, T. Hakala, E. Räikkönen, H. Kaartinen, S. Kaasalainen, P. Litkey, “Tree species classification from fused active hyperspectral reflectance and LIDAR measurements,” For. Ecol. Manage. 260(10), 1843–1852 (2010). [CrossRef]
  19. Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, R. Chen, “Two-channel hyperspectral LiDAR with a supercontinuum laser source,” Sensors (Basel) 10(7), 7057–7066 (2010). [CrossRef] [PubMed]
  20. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, 1993).
  21. T. J. Papetti, W. E. Walker, C. E. Keffer, B. E. Johnson, “Coherent backscatter: measurement of the retroreflective BRDF peak exhibited by several surfaces relevant to ladar applications,” Proc. SPIE 6682, 66820E, 66820E-13 (2007). [CrossRef]
  22. C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ. 8(2), 127–150 (1979). [CrossRef]
  23. J. Penuelas, I. Filella, C. Biel, L. Serrano, R. Save, “The reflectance at the 950–970 nm region as an indicator of plant water status,” Int. J. Remote Sens. 14(10), 1887–1905 (1993). [CrossRef]
  24. D. Haboudane, J. R. Miller, E. Pattey, P. J. Zarco-Tejada, I. B. Strachan, “Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture,” Remote Sens. Environ. 90(3), 337–352 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited