OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7165–7172

Interference theory of metamaterial perfect absorbers

Hou-Tong Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7165-7172 (2012)
http://dx.doi.org/10.1364/OE.20.007165


View Full Text Article

Enhanced HTML    Acrobat PDF (1238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The impedance matching to free space in metamaterial perfect absorbers has been believed to involve and rely on magnetic resonant response, with direct evidence provided by the anti-parallel surface currents in the metal structures. Here I present a different theoretical interpretation based on interference, which shows that the two layers of metal structures in metamaterial absorbers are linked only by multiple reflections with negligible near-field interactions or magnetic resonances. This is further supported by the out-of-phase surface currents derived at the interfaces of resonator array and ground plane through multiple reflections and superpositions. The theory developed here explains all features observed in narrowband metamaterial absorbers and therefore provides a profound understanding of the underlying physics.

© 2012 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(310.1620) Thin films : Interference coatings
(160.3918) Materials : Metamaterials
(310.6805) Thin films : Theory and design

ToC Category:
Metamaterials

History
Original Manuscript: December 21, 2011
Revised Manuscript: February 24, 2012
Manuscript Accepted: February 26, 2012
Published: March 14, 2012

Citation
Hou-Tong Chen, "Interference theory of metamaterial perfect absorbers," Opt. Express 20, 7165-7172 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7165


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Alù, F. Bilotti, N. Engheta, and L. Vegni, “A thin absorbing screen using metamaterial complementary pairs,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Turin, Italy, September 12–16, 2005), 75–78.
  2. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100, 207402 (2008). [CrossRef] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  4. H.-T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5, 513–533 (2011). [CrossRef]
  5. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  6. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95, 137404 (2005). [CrossRef] [PubMed]
  7. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005). [CrossRef]
  8. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express16, 7181–7188 (2008). [CrossRef] [PubMed]
  9. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B79, 045131 (2009). [CrossRef]
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010). [CrossRef] [PubMed]
  11. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011). [CrossRef]
  12. J. Zhou, H.-T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” http://arxiv.org/abs/1111.0343 .
  13. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett.105, 073901 (2010). [CrossRef] [PubMed]
  14. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express19, 21155–21162 (2011). [CrossRef] [PubMed]
  15. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express17, 20256–20265 (2009). [CrossRef] [PubMed]
  16. D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B82, 205117 (2010). [CrossRef]
  17. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78, 241103(R) (2008). [CrossRef]
  18. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B79, 033101 (2009). [CrossRef]
  19. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104, 207403 (2010). [CrossRef] [PubMed]
  20. CST Microwave Studio 2009, http://www.cst.com/ .
  21. C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials,” Metamaterials3, 100–112 (2009). [CrossRef]
  22. M. Born and E. Wolf, Principles of optics (Pergamon, 1980), 6th ed.
  23. J. D. Jackson, Classical Electrodynamics (Wiley, 1998), 3rd ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited