OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 7 — Mar. 26, 2012
  • pp: 7564–7574

Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography

Teresa Torzicky, Michael Pircher, Stefan Zotter, Marco Bonesi, Erich Götzinger, and Christoph K. Hitzenberger  »View Author Affiliations


Optics Express, Vol. 20, Issue 7, pp. 7564-7574 (2012)
http://dx.doi.org/10.1364/OE.20.007564


View Full Text Article

Enhanced HTML    Acrobat PDF (1540 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new method to automatically segment the thickness of the choroid in the human eye by polarization sensitive optical coherence tomography (PS-OCT). A swept source PS-OCT instrument operating at a center wavelength of 1040 nm is used. The segmentation method is based entirely on intrinsic, tissue specific polarization contrast mechanisms. In a first step, the anterior boundary of the choroid, the retinal pigment epithelium, is segmented based on depolarization. In a second step, the choroid-sclera interface is found by using the birefringence of the sclera. The method is demonstrated in five healthy eyes. The mean repeatability (standard deviation) of thickness measurement was found to be 18.3 µm.

© 2012 OSA

OCIS Codes
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 18, 2012
Revised Manuscript: March 14, 2012
Manuscript Accepted: March 15, 2012
Published: March 19, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Teresa Torzicky, Michael Pircher, Stefan Zotter, Marco Bonesi, Erich Götzinger, and Christoph K. Hitzenberger, "Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography," Opt. Express 20, 7564-7574 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-7-7564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  3. W. Drexler and J. G. Fujimoto, Optical coherence tomography. Technology and Applications (Springer, Berlin, 2008).
  4. W. Drexler, J. G. Fujimoto, “Optical coherence tomography in ophthalmology,” J. Biomed. Opt. 12(4), 041201 (2007). [CrossRef]
  5. W. Geitzenauer, C. K. Hitzenberger, U. M. Schmidt-Erfurth, “Retinal optical coherence tomography: past, present and future perspectives,” Br. J. Ophthalmol. 95(2), 171–177 (2011). [CrossRef] [PubMed]
  6. A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  7. G. Häusler, M. W. Lindner, “Coherence radar” and “spectral radar” - new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998). [CrossRef]
  8. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002). [CrossRef] [PubMed]
  9. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  11. M. A. Choma, M. V. Sarunic, C. H. Yang, J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  12. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005). [CrossRef] [PubMed]
  13. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007). [CrossRef] [PubMed]
  14. E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006). [CrossRef] [PubMed]
  15. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, K. Bizheva, “High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett. 33(21), 2479–2481 (2008). [PubMed]
  16. M. Esmaeelpour, B. Povazay, B. Hermann, B. Hofer, V. Kajic, K. Kapoor, N. J. L. Sheen, R. V. North, W. Drexler, “Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients,” Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010). [CrossRef] [PubMed]
  17. M. Esmaeelpour, B. Považay, B. Hermann, B. Hofer, V. Kajic, S. L. Hale, R. V. North, W. Drexler, N. J. L. Sheen, “Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(8), 5311–5316 (2011). [CrossRef] [PubMed]
  18. Y. Ikuno, I. Maruko, Y. Yasuno, M. Miura, T. Sekiryu, K. Nishida, T. Iida, “Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(8), 5536–5540 (2011). [CrossRef] [PubMed]
  19. V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, W. Drexler, “Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3(1), 86–103 (2012). [CrossRef] [PubMed]
  20. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992). [CrossRef]
  21. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997). [CrossRef] [PubMed]
  22. R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990). [CrossRef] [PubMed]
  23. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002). [CrossRef] [PubMed]
  24. H. B. Brink, G. J. van Blokland, “Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry,” J. Opt. Soc. Am. A 5(1), 49–57 (1988). [CrossRef] [PubMed]
  25. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004). [CrossRef] [PubMed]
  26. B. Baumann, E. Götzinger, M. Pircher, C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007). [CrossRef] [PubMed]
  27. M. Yamanari, S. Makita, Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008). [CrossRef] [PubMed]
  28. S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008). [CrossRef] [PubMed]
  29. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004). [CrossRef] [PubMed]
  30. M. Mujat, B. H. Park, B. Cense, T. C. Chen, J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007). [CrossRef] [PubMed]
  31. M. Yamanari, M. Miura, S. Makita, T. Yatagai, Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008). [CrossRef] [PubMed]
  32. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J Biophoton. 1(2), 129–139 (2008). [CrossRef] [PubMed]
  33. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006). [CrossRef] [PubMed]
  34. E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express 17(5), 4151–4165 (2009). [CrossRef] [PubMed]
  35. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008). [CrossRef] [PubMed]
  36. B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010). [CrossRef] [PubMed]
  37. C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010). [CrossRef] [PubMed]
  38. E. Götzinger, M. Pircher, C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005). [CrossRef] [PubMed]
  39. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001). [CrossRef] [PubMed]
  40. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011). [CrossRef] [PubMed]
  41. K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. Da Silva, M. J. Everett, “Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography,” Appl. Opt. 37(25), 6026–6036 (1998). [CrossRef] [PubMed]
  42. R. F. Spaide, H. Koizumi, M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008). [CrossRef] [PubMed]
  43. W. Rahman, F. K. Chen, J. Yeoh, P. Patel, A. Tufail, L. Da Cruz, “Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(5), 2267–2271 (2011). [CrossRef] [PubMed]
  44. C. S. Tan, Y. Ouyang, H. Ruiz, S. R. Sadda, “Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(1), 261–266 (2012). [CrossRef] [PubMed]
  45. L. Duan, M. Yamanari, Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography,” Opt. Express 20(3), 3353–3366 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited